The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.12.044DOI Listing

Publication Analysis

Top Keywords

river sediment
12
enhanced bioremediation
12
electrokinetic process
12
bioremediation electrokinetic
8
growth intrinsic
8
organic pollutants
8
microbial growth
8
sediment
5
enhanced
5
orc
5

Similar Publications

Effects of dimethylarsenate coprecipitation with ferrihydrite on Fe(II)-induced mineral transformation and the release of dimethylarsenate.

Environ Pollut

December 2024

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:

Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.

View Article and Find Full Text PDF

Process-based quantitative description of carbon biogeochemical cycle in a reclaimed water intake area.

Environ Res

December 2024

State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.

Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.

View Article and Find Full Text PDF

Have human activities been accurately evaluated in sediment yield changes in the middle reaches of the Yellow River?

J Environ Manage

December 2024

College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China; Institute of Soil and Water Conservation, Chinese Academy and Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi Province, China.

The middle reaches of the Yellow River (MRYR) in China are some of the most severely eroded areas in the world. Knowledge of the changes in sediment yield in the MRYR is of great significance for understanding the impact of human activities on soil erosion and sediment transport. Using data from the MRYR and 13 sub-basins, this study aims to evaluate the actual contributions of human activities to sediment yields and to examine whether the widely used Mann-Kendall test has underestimated this contribution.

View Article and Find Full Text PDF

Background: The highly industrialized areas characterize the delta coasts of the world, due to the discharging of large quantity of wastewater into the river estuaries. The entrance of phenolic compounds and PAHs into the aquatic environment has not been sufficiently studied on the Egyptian Mediterranean coast. The article examines the content and ecological risks associated with 11 phenolic compounds and 14 PAHs in the bottom sediments of the Nile River estuaries, the largest river systems that discharged into the Mediterranean Sea.

View Article and Find Full Text PDF

Temperature alters bacterial community structure in sediment of mountain stream.

Sci Rep

December 2024

Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.

Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!