Electron-Hole Pair Effects in Polyatomic Dissociative Chemisorption: Water on Ni(111).

J Phys Chem Lett

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.

Published: January 2016

The influence of electron-hole pairs in dissociative chemisorption of a polyatomic molecule (water) on metal surfaces is assessed for the first time using a friction approach. The atomic local density dependent friction coefficients computed based on a free electron gas embedding model are employed in classical molecular dynamics simulations of the water dissociation dynamics on rigid Ni(111) using a recently developed nine dimensional interaction potential energy surface for the system. The results indicate that nonadiabatic effects are relatively small and they do not qualitatively alter the mode specificity in the dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b02737DOI Listing

Publication Analysis

Top Keywords

dissociative chemisorption
8
electron-hole pair
4
pair effects
4
effects polyatomic
4
polyatomic dissociative
4
chemisorption water
4
water ni111
4
ni111 influence
4
influence electron-hole
4
electron-hole pairs
4

Similar Publications

Two-dimensional MC-MXenes, characterized by their lightweight nature, tunable surface structures, and strong affinity for hydrogen, hold significant promise for addressing various challenges in hydrogen energy utilization. This study focuses on investigating the hydrogen adsorption and desorption properties, as well as the stability of hydrogenated compounds in 19 pure MC-MXenes nanosheets. The results indicate that hydrogen adsorption on MC primarily occurs through weak physisorption, with MnC and FeC from the fourth period, and AgC and CdC from the fifth period exhibiting the lowest adsorption energies.

View Article and Find Full Text PDF

The accurate modeling of dissociative chemisorption of molecules on metal surfaces presents an exciting scientific challenge to theorists, and is practically relevant to modeling heterogeneously catalyzed reactive processes in computational catalysis. The first important scientific challenge in the field is that accurate barriers for dissociative chemisorption are not yet available from first principles methods. For systems that are not prone to charge transfer (for which the difference between the work function of the surface and the electron affinity of the molecule is larger than 7 eV) this problem can be circumvented: chemically accurate barrier heights can be extracted with a semi-empirical version of density functional theory (DFT).

View Article and Find Full Text PDF

Ozone in the troposphere poses significant environmental and health risks, contributing to global warming and being linked to respiratory diseases, making it critical to find effective methods to remove ozone from the atmosphere. This study investigates the adsorption of ozone on boron nitride (BN) monolayers doped with metal-free elements, specifically carbon, silicon, oxygen, and phosphorus, using first-principles calculations based on Density Functional Theory (DFT). Our results showed that ozone adsorbed on boron nitride doped with carbon exhibited physisorption and had an adsorption energy of -0.

View Article and Find Full Text PDF

Yttria-stabilized zirconia (YSZ) is found in a wide range of applications, from solid-oxide fuel cells to medical devices and implants. A molecular-level understanding of the hydration of YSZ surfaces is essential for optimizing its performance and durability in these applications. Nevertheless, only a limited amount of literature is available about the surface hydration of YSZ single crystals.

View Article and Find Full Text PDF

CO as a typical σ-donor is one of the most important ligands in chemistry, while planar B is experimentally known as the most prominent magic-number boron cluster analogous to benzene. Joint gas-phase mass spectroscopy, collision-induced dissociation, and first-principles theory investigations performed herein indicate that B reacts with CO successively under ambient conditions to form a series of boron carbonyl complexes B(CO) up to = 7, presenting the largest boron carbonyl complexes observed to date with a quasi-planar B core at the center coordinated by CO ligands around it. Extensive theoretical analyses unveil both the chemisorption pathways and bonding patterns of these aromatic B(CO) monocations which, with three delocalized π bonds well-retained over the slightly wrinkled B moiety, all prove to be boron carbonyl analogs of benzene tentatively named as boron carbonyl aromatics (BCAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!