Ethanolamine plasmalogen (PlsEtn), which is present at high levels in brains, is believed to be involved in neuronal protection. The present study was performed to search for PlsEtn resources in foodstuffs. The foodstuffs examined showed a wide range of PlsEtn contents from 5 to 549 μmol/100 g wet wt. The marine invertebrates, blue mussel, and ascidian had high PlsEtn contents (over 200 μmol/100 g wet wt). Profiling of the molecular species showed that the predominant fatty acids of PlsEtn species were 20:5 (EPA) and 22:6 (DHA) at the sn-2 position of the glycerol moiety in marine foodstuffs, whereas major PlsEtn species in land foodstuffs were 20:4. Following quantitative analysis by multiple reaction monitoring, the ascidian viscera were shown to contain the highest levels of 18:0/20:5-PlsEtn and 18:0/22:6-PlsEtn (86 and 68 μmol/100 g wet wt, respectively). In order to evaluate a neuronal antiapoptotic effect of these PlsEtn species, human neuroblastoma SH-SY5Y cells were treated with ethanolamine glycerophospholipid (EtnGpl), purified from the ascidian viscera, under serum starvation conditions. Extrinsic EtnGpl from ascidian viscera showed stronger suppression of cell death induced by serum starvation than with bovine brain EtnGpl. The EtnGpl from ascidian viscera strongly suppressed the activation of caspase 3. These results suggest that PlsEtn, especially that containing EPA and DHA, from marine foodstuffs is potentially useful for a therapeutic dietary supplement preventing neurodegenerative diseases, such as Alzheimer's disease (AD).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-015-4112-y | DOI Listing |
J Xenobiot
December 2024
Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy.
Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian .
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2023
Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil.
Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study GAGs regarding composition, structure, and biological activity.
View Article and Find Full Text PDFMethods Mol Biol
April 2022
Department of Biology, University of Padova, Padova, Italy.
Ascidians are sessile tunicates, that is, marine animals belonging to the phylum Chordata and considered the sister group of vertebrates. They are widespread in all the seas, constituting abundant communities in various ecosystems. Among chordates, only tunicates are able to reproduce asexually, forming colonies.
View Article and Find Full Text PDFMar Drugs
November 2021
Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan.
Toxic crabs of the family Xanthidae contain saxitoxins (STXs) and/or tetrodotoxin (TTX), but the toxin ratio differs depending on their habitat. In the present study, to clarify within reef variations in the toxin profile of xanthid crabs, we collected specimens of the toxic xanthid crab and their sampling location within a single reef (Yoshihara reef) on Ishigaki Island, Okinawa Prefecture, Japan, in 2018 and 2019. The STXs/TTX content within the appendages and viscera or stomach contents of each specimen was determined by instrumental analyses.
View Article and Find Full Text PDFCancers (Basel)
May 2020
Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil.
Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!