The single-electron oxidative dimerization of basket-handle porphyrins (BHPs) with different coordinated metal ions [Cu(II), Ni(II), Pd(II), Zn(II)] yielded directly meso-meso linked dimers in excellent yields. The synthetic protocol is suited for coupling substrates with different meso-substituents (H, Br, aryl, alkyl) opposite to the coupling site. Experimental findings concerning reactivities and selectivities were in good agreement with theoretical investigations using ALIE calculations. The dimers, which all are axially chiral, were resolved into their enantiomers by HPLC on a chiral phase. ECD spectra were measured in the stopped-flow mode and compared with results from quantum-chemical ECD calculations to assign the absolute configuration. One directly linked dimer was further oxidized to a fused system, which possessed a stable helical chirality. Its absolute configuration was again assigned by ECD investigations. Furthermore, functionalized BHPs and tetraarylporphyrins were coupled under Suzuki conditions to give dimers and trimers with either β-meso or β-β linkages. Because of the steric shielding of one of the BHP hemispheres, the products were formed with full diastereoselectivity regarding all porphyrin-porphyrin axes. The stereostructures of these arrays were investigated by quantum-chemical calculations (DFT-D3, TD DFT, and sTD DFT), and the absolute configurations were assigned for all chiral representatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.5b02638 | DOI Listing |
Nat Commun
January 2025
Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, Paris, France.
Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:
Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFIntensive Crit Care Nurs
January 2025
Faculty of Medicine and Health, The University of Sydney Susan Wakil School of Nursing and Midwifery Camperdown NSW Australia; Western Sydney Local Health District, North Parramatta, NSW 2141, Australia. Electronic address:
Background: Emergency departments have high levels of uncertainty, long wait times, resource shortages, overcrowding and a constantly changing environment. Patient experience and patient safety are directly linked, yet levels of patient experience are stagnant. To improve emergency nursing care and patient experience, an emergency nursing framework HIRAID® (History including Infection risk, Red flags, Assessment, Interventions, Diagnostics, communication, and reassessment) was implemented in 29 Australian emergency departments.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China. Electronic address:
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!