Tenascin-C, a Prognostic Determinant of Esophageal Squamous Cell Carcinoma.

PLoS One

Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.

Published: July 2016

Background: Tenascin-C, an adhesion modulatory extracellular matrix molecule, is highly expressed in numerous human malignancies; thus, it may contribute to carcinogenesis and tumor progression. We explored the clinicopathological significance of Tenascin-C as a prognostic determinant of esophageal squamous cell carcinoma (ESCC).

Methods: In ESCC patient tissues and cell lines, the presence of isoforms were examined using western blotting. We then investigated Tenascin-C immunohistochemical expression in 136 ESCC tissue samples. The clinical relevance of Tenascin-C expression and the correlation between Tenascin-C expression and expression of other factors related to cancer-associated fibroblasts (CAFs) were also determined.

Results: Both 250 and 350 kDa sized isoforms of Tenascin-C were expressed only in esophageal cancer tissue not in normal tissue. Furthermore, both isoforms were also identified in all of four CAFs derived from esophageal cancer tissues. Tenascin-C expression was remarkably higher in ESCC than in adjacent non-tumor esophageal epithelium (p < 0.001). Tenascin-C expression in ESCC stromal fibroblasts was associated with patient's age, tumor (pT) stage, lymph node metastasis, clinical stage, and cancer recurrence. Tenascin-C expression in cancer cells was correlated with an increase in tumor-associated macrophage (TAM) population, cancer recurrence, and hypoxia inducible factor1α (HIF1α) expression. Moreover, Tenascin-C overexpression in cancer cells and stromal fibroblasts was an independent poor prognostic factor for overall survival (OS) and disease-free survival (DFS). In the Cox proportional hazard regression model, Tenascin-C overexpression in cancer cells and stromal fibroblasts was a significant independent hazard factor for OS and DFS in ESCC patients in both univariate and multivariate analyses. Furthermore, Tenascin-C expression in stromal fibroblasts of the ESCC patients was positively correlated with platelet-derived growth factor α (PDGFRα), PDGFRβ, and smooth muscle actin (SMA) expression. The 5-year OS and DFS rates were remarkably lower in patients with positive expressions of both Tenascin-C and PDGFRα (p < 0.001), Tenascin-C and PDGFRβ (p < 0.001), Tenascin-C and SMA (p < 0.001), Tenascin-C and fibroblast activation protein (FAP) (p < 0.001), and Tenascin-C and fibroblast-stimulating protein-1 (FSP1) (p < 0.001) in ESCC stromal fibroblasts than in patients with negative expressions of both Tenascin-C and one of the abovementioned CAF markers.

Conclusion: Our results show that Tenascin-C is a reliable and significant prognostic factor in ESCC. Tenascin-C may thus be a potent ESCC therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701415PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145807PLOS

Publication Analysis

Top Keywords

tenascin-c expression
24
tenascin-c
21
0001 tenascin-c
20
stromal fibroblasts
20
cancer cells
12
expression
10
escc
9
tenascin-c prognostic
8
prognostic determinant
8
determinant esophageal
8

Similar Publications

Tenascin-C promotes bone regeneration via inflammatory macrophages.

Cell Death Differ

January 2025

State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages.

View Article and Find Full Text PDF

Pulmonary veno-occlusive disease (PVOD) is a lethal variant of pulmonary hypertension. The degree of pulmonary arterial involvement varies. Here, we compare two PVOD patients who were transplanted at 8 years of age, whereof one is a homozygous mutation carrier.

View Article and Find Full Text PDF

Asthma is a prevalent chronic inflammatory airway disease that affects both adults and children. Inflammation-induced airway remodeling can lead to irreversible damage to the airways. Traditional Chinese medicine (TCM) plays a significant role in healthcare, offering potential improvements for chronic airway inflammation associated with asthma.

View Article and Find Full Text PDF

N-Acetylcysteine Treats Spinal Cord Injury by Inhibiting Astrocyte Proliferation.

Anal Cell Pathol (Amst)

December 2024

Department of Orthopedics, Jincheng General Hospital, China Kangping Street, Beishidian Town, Jincheng 048006, China.

Article Synopsis
  • The study investigates the effects of N-Acetylcysteine (NAC) on astrocyte proliferation following spinal cord injury (SCI) using rat models and primary astrocytes.
  • NAC reduces the abundance of key proteins in reactive astrocytes and inhibits pathways associated with inflammation and cellular proliferation, specifically targeting the JAK/STAT signaling pathway.
  • The findings suggest that NAC can effectively alleviate the effects of SCI and maintain these benefits without recurrence for at least 60 days.
View Article and Find Full Text PDF

The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!