A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absence of IFNγ promotes hippocampal plasticity and enhances cognitive performance. | LitMetric

Absence of IFNγ promotes hippocampal plasticity and enhances cognitive performance.

Transl Psychiatry

Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.

Published: January 2016

Cognitive functioning can be differentially modulated by components of the immune system. Interferon-γ (IFNγ) is a pro-inflammatory cytokine whose production is altered in many conditions displaying some degree of cognitive deficits, although its role in cognitive functioning is still unclear. Here we show that the absence of IFNγ selectively enhances cognitive behaviours in tasks in which the hippocampus is implicated. Moreover, the absence of IFNγ leads to volumetric and cell density changes that are restricted to the dorsal part of the hippocampus. In the dorsal hippocampus, the absence of this pro-inflammatory cytokine leads to an increase in the numbers of newly born neurons in the subgranular zone of the dentate gyrus (DG), an adult neurogenic niche known to support learning and memory, and to an enlargement of the dendritic arborization of DG granule and cornu ammonis (CA)1 pyramidal neurons. Moreover, it also modestly impacts synaptic plasticity, by decreasing the paired-pulse facilitation in the Schaffer collateral to CA1 pyramidal cell synapses. Taken together, our results provide evidence that IFNγ is a negative regulator of hippocampal functioning, as its absence positively impacts on dorsal hippocampus structure, cell density, neuronal morphology and synaptic plasticity. Importantly, these neuroplastic changes are associated with improved performance in learning and memory tasks. Therefore, blockage of the IFNγ signalling may present as promising therapeutic targets for the treatment of inflammation-associated cognitive dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073154PMC
http://dx.doi.org/10.1038/tp.2015.194DOI Listing

Publication Analysis

Top Keywords

absence ifnγ
12
dorsal hippocampus
12
enhances cognitive
8
cognitive functioning
8
pro-inflammatory cytokine
8
cell density
8
learning memory
8
ca1 pyramidal
8
synaptic plasticity
8
cognitive
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!