Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the development of subcellularly targeted DDSs that will deliver specific drugs to the nuclei of the target cells and will enhance efficacy and reduce toxicity of these drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b10295 | DOI Listing |
Alzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.
View Article and Find Full Text PDFExp Neurobiol
December 2024
Department of Anatomy and Cell Biology, Dong-A University, College of Medicine, Busan 49201, Korea.
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.
View Article and Find Full Text PDFClin Nucl Med
January 2025
From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Purpose: The aim of this study was to investigate the value of 68Ga-NOTA-RM26 (68Ga-RM26), a gastrin-releasing peptide receptor-targeting antagonist labeled with the radionuclide 68Ga, in the diagnosis of high-grade gliomas and in combination with multiregional biopsies using PET/CT.
Patients And Methods: After institutional review board approval and informed consent, a total of 35 patients with suspected glioma lesions were enrolled in this study. All patients underwent 68Ga-RM26 PET/CT scans within 2 weeks before surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!