Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/684590 | DOI Listing |
Phys Rev Lett
December 2024
Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.
We present a protocol for detecting multipartite entanglement in itinerant many-body electronic systems using single-particle Green's functions. To achieve this, we first establish a connection between the quantum Fisher information and single-particle Green's functions by constructing a set of witness operators built out of single electron creation and destruction operators in a doubled system. This set of witness operators is indexed by a momentum k.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.
Objectives: Peripheral Sensory Neuropathy (PSN) is an under-recognized feature in systemic sclerosis (SSc). Moreover, SSc foot involvement is frequent but poorly investigated. We aimed to provide a detailed characterization of foot PSN in a large cohort of SSc patients, describing its associations with disease-specific features, physical disability, and Quality of Life (QoL).
View Article and Find Full Text PDFPresented is an O-band silicon photonics dual-polarization coherent/IMDD modulator integrated with semiconductor optical amplifiers and tunable laser to enhance the short-reach link budget. The laser demonstrated output power >6 dBm and a <250 kHz linewidth over a 14 nm tuning range. Modulators paired with custom 64 Gbaud QPSK drivers exhibited improved analog link sensitivity compared to similar devices without integrated gain sections.
View Article and Find Full Text PDFThermal engineering can be used to exploit absorption in a silicon optical cavity. In this work, the steady state profile of the heat generated by absorption is shaped and used to generate a dynamic heterostructure in a weakly confined silicon optical cavity. This is demonstrated in an edge defect photonic crystal optomechanical cavity to produce phonon lasing and sub-GHz optical pulsing with photon-phonon cooperativity of 0.
View Article and Find Full Text PDFA passive temperature-compensated magnetic field sensor based on the material thermal-optics effect has been proposed. The proposed structure is easy to fabricate, consisting of only two single-mode optical fibers adhered to a magnetostrictive rod and the Fabry-Perot (FP) cavity filled with polydimethylsiloxane (PDMS). Benefitting from the negative thermal-optics coefficient of PDMS, the temperature cross-sensitivity of the sensor decreased from 351.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!