Oxidative stress, biochemical alterations, and hyperlipidemia in female rats induced by lead chronic toxicity during puberty and post puberty periods.

Iran J Basic Med Sci

Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.

Published: October 2015

Objectives: Lead (Pb) is a toxic metal inducing many destructive effects leading to a broad range of physiological, biochemical, and neurological dysfunctions in humans and laboratory animals.

Materials And Methods: Here, we investigated the effect of chronic exposure to Pb (50 mg/l) on oxidative stress, hepatotoxicity, nephrotoxicity, and lipid profile of two different age groups of female rats treated with Pb from delivery until puberty period (40 days, Pb40) and post puberty period (65 days, Pb65).

Results: Our results clearly show that the administration of Pb produces oxidative damage in liver and kidney, as strongly suggested by the significant increase in TBARS, decrease in total SH, and the alteration of SOD activity. Elevation in liver function biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduction in total protein (liver and plasma) and albumin are evidence of perturbations of liver synthetic function. In young Pb-treated group, Pb-induced nephropathy was more pronounced by the increase in the levels of creatinine, urea, and uric acid. However, hyperlipidemia was evident for both Pb-exposed groups leading to a potential risk for cardiovascular diseases and atherosclerosis.

Conclusion: It is concluded that Pb induces metabolic and oxidative disturbances depending on the age of the animals, which are not negligible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686575PMC

Publication Analysis

Top Keywords

oxidative stress
8
female rats
8
post puberty
8
puberty period
8
period days
8
oxidative
4
stress biochemical
4
biochemical alterations
4
alterations hyperlipidemia
4
hyperlipidemia female
4

Similar Publications

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.

View Article and Find Full Text PDF

Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.

View Article and Find Full Text PDF

We aimed to explore the role of ikarugamycin (IKA) in breast cancer, its connection with hexokinase-2 (HK-2) repression, and tissue factor (TF). This study sought to extend the role of HK-2 as a TF activator in a comprehensive analysis of these interactions from the enzyme, gene, and protein levels. The investigation was performed with MDA-MB-231 and MCF-7 breast cancer lines.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!