Purpose: To report the clinicopathologic features of a case of conjunctival synthetic fiber granuloma.

Case Report: A 6-year-old girl presented with a slow-growing red nodule in the right inferior conjunctival sac with no history of surgery or trauma. Histopathological examination revealed foreign body type granulomatous inflammation around birefringent fibers of variable colors consistent with synthetic fiber granuloma.

Conclusion: This is the first case report of synthetic fiber (teddy bear) conjunctival granuloma from Iran. Despite its scarcity, ophthalmologists should consider this type of granuloma in the differential diagnoses of childhood conjunctival lesions especially when the lesion is unilateral and inferior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687271PMC
http://dx.doi.org/10.4103/2008-322X.170342DOI Listing

Publication Analysis

Top Keywords

synthetic fiber
16
conjunctival granuloma
8
case report
8
conjunctival
5
synthetic
4
fiber "teddy
4
"teddy bear"
4
bear" conjunctival
4
granuloma case
4
report
4

Similar Publications

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.

View Article and Find Full Text PDF

Understanding the differences between functional and structural human brain connectivity has been a focus of an extensive amount of neuroscience research. We employ a novel approach using the multinomial stochastic block model (MSBM) to explicitly extract components that characterize prominent differences across graphs. We analyze structural and functional connectomes derived from high-resolution diffusion-weighted MRI and fMRI scans of 250 Human Connectome Project subjects, analyzed at group connectivity level across 50 subjects.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!