High dose chemotherapy with stem cell support in the treatment of testicular cancer.

World J Stem Cells

Lazar Popovic, Gorana Matovina-Brko, Milica Popovic, Jelena Vukojevic, Darjana Jovanovic, Medical School, University of Novi Sad, 21000 Novi Sad, Serbia.

Published: December 2015

Testicular germ cell cancer (TGCC) is rare form of malignant disease that occurs mostly in young man between age 15 and 40. The worldwide incidence of TGCC is 1.5 per 100000 man with the highest rates in North Europe. After discovery of cisplatin cure rates of TGCC are very favorable between 90%-95% and unlike most solid tumors, cure rate for metastatic TGCC is around 80%. Metastatic TGCC is usually treated with 3-4 cycles of bleomycin, etoposide, cisplatinum chemotherapy with or without retroperitoneal surgery and cure rates with this approach are between 41% in poor risk group and 92% in good risk group of patients. Cure rates are lower in relapsed and refractory patients and many of them will die from the disease if not cured with first line chemotherapy. High dose chemotherapy (HDCT) approach was used for the first time during the 1980s. Progress in hematology allowed the possibility to keep autologous haematopoietic stem cells alive ex-vivo at very low temperatures and use them to repopulate the bone marrow after sub-lethal dose of intesive myeloablative chemotherapy. Despite the fact that there is no positive randomized study to prove HDCT concept, cure rates in relapsed TGCC are higher after high dose therapy then in historical controls in studies with conventional treatment. Here we review clinical studies in HDCT for TGCC, possibilities of mobilising sufficient number of stem cells and future directions in the treatment of this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691691PMC
http://dx.doi.org/10.4252/wjsc.v7.i11.1222DOI Listing

Publication Analysis

Top Keywords

cure rates
16
high dose
12
dose chemotherapy
8
metastatic tgcc
8
risk group
8
stem cells
8
tgcc
7
chemotherapy
5
rates
5
cure
5

Similar Publications

Integrated Genomics Reveal Potential Resistance Mechanisms of PANoptosis-Associated Genes in Acute Myeloid Leukemia.

Mol Carcinog

January 2025

Institute of Precision Medicine, The First Affiliated Hospital; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Acute myeloid leukemia (AML) is marked by the proliferation of abnormal myeloid progenitor cells in the bone marrow and blood, leading to low cure rates despite new drug approvals from 2017 to 2018. Current therapies often fail due to the emergence of drug resistance mechanisms, such as those involving anti-apoptotic pathways and immune evasion, highlighting an urgent need for novel approaches to overcome these limitations. Programmed cell death (PCD) is crucial for tissue homeostasis, with PANoptosis-a form of PCD integrating pyroptosis, apoptosis, and necroptosis-recently identified.

View Article and Find Full Text PDF

Systemic Lupus Erythematous: Gene Polymorphisms, Epigenetics, Environmental, Hormonal and Nutritional Factors in the Consideration of Personalized Therapy.

Arch Intern Med Res

December 2024

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA.

Systemic Lupus Erythematosus (SLE) is a chronic illness that can affect many tissues through the production of autoantibodies. A definite etiology has not been conclusively established, but current research points to the influences which include genetic, hormonal and environmental factors. SLE is difficult to treat due to its multifactorial pathogenesis and heterogeneity in clinical manifestations.

View Article and Find Full Text PDF

Background: Regular mass drug administration of praziquantel has a positive impact on reducing the burden of human schistosomiasis, however transmission still persists in many areas. To reach disease elimination; tailored interventions are needed to not only further reduce infections but also to tackle areas of persistent high prevalences of infection. One proposed approach is timed treatment based on the natural disease transmission cycle in relation to seasons.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!