On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy.

Proc Natl Acad Sci U S A

Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125;

Published: January 2016

Understanding the dynamical nature of the catalytic active site embedded in complex systems at the atomic level is critical to developing efficient photocatalytic materials. Here, we report, using 4D ultrafast electron microscopy, the spatiotemporal behaviors of titanium and oxygen in a titanosilicate catalytic material. The observed changes in Bragg diffraction intensity with time at the specific lattice planes, and with a tilted geometry, provide the relaxation pathway: the Ti(4+)=O(2-) double bond transformation to a Ti(3+)-O(1-) single bond via the individual atomic displacements of the titanium and the apical oxygen. The dilation of the double bond is up to 0.8 Å and occurs on the femtosecond time scale. These findings suggest the direct catalytic involvement of the Ti(3+)-O(1-) local structure, the significance of nonthermal processes at the reactive site, and the efficient photo-induced electron transfer that plays a pivotal role in many photocatalytic reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725520PMC
http://dx.doi.org/10.1073/pnas.1522869113DOI Listing

Publication Analysis

Top Keywords

dynamical nature
8
ultrafast electron
8
electron microscopy
8
double bond
8
nature active
4
active center
4
center single-site
4
single-site photocatalyst
4
photocatalyst visualized
4
visualized ultrafast
4

Similar Publications

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Owing to its topographic variations, Ethiopia is a biodiversity-rich country. However, the long-term degradation of resources has resulted in isolated forest patches largely around sacred places. Thus, this work was aimed to evaluate the plant community formation and structural dynamics of the Abraham Sacred Forest patch.

View Article and Find Full Text PDF

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

Kinetic Control of Self-Assembly Pathway in Dual Dynamic Covalent Polymeric Systems.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.

Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.

View Article and Find Full Text PDF

Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!