Development of a Drilling Simulator for Dental Implant Surgery.

J Dent Educ

Dr. Kinoshita is Assistant Professor, Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan; Mr. Nagahata is a master course student, Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Dr. Takano is Professor, Department of Mechanical Engineering, Keio University, Kanagawa, Japan; Dr. Takemoto is Assistant Professor, Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan; Dr. Matsunaga is Associate Professor, Department of Anatomy, Tokyo Dental College, Tokyo, Japan; Dr. Abe is Professor, Department of Anatomy, Tokyo Dental College, Tokyo, Japan; Dr. Yoshinari is Professor, Oral Health Science Center and Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan; and Dr. Kawada is Professor, Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan.

Published: January 2016

The aim of this study was to develop and evaluate a dental implant surgery simulator that allows learners to experience the drilling forces necessary to perform an osteotomy in the posterior mandibular bone. The simulator contains a force-sensing device that receives input and counteracts this force, which is felt as resistance by the user. The device consists of an actuator, a load cell, and a control unit. A mandibular bone model was fabricated in which the predicted forces necessary to drill the cortical and trabecular bone were determined via micro CT image-based 3D finite element analysis. The simulator was evaluated by five dentists from the Department of Implantology at Tokyo Dental College. The ability of the evaluators to distinguish the drilling resistance through different regions of the mandibular bone was investigated. Of the five dentists, four sensed the change in resistance when the drill perforated the upper cortical bone. All five dentists were able to detect when the drill made contact with lingual cortical bone and when the lingual bone was perforated. This project successfully developed a dental implant surgery simulator that allows users to experience the forces necessary to drill through types of bone encountered during osteotomy. Furthermore, the researchers were able to build a device by which excessive drilling simulates a situation in which the lingual cortical bone is perforated--a situation that could lead to negative repercussions in a clinical setting. The simulator was found to be useful to train users to recognize the differences in resistance when drilling through the mandibular bone.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mandibular bone
16
dental implant
12
implant surgery
12
cortical bone
12
bone
10
surgery simulator
8
simulator allows
8
forces drill
8
lingual cortical
8
simulator
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!