Tau aggregation is a pathological feature of numerous neurodegenerative disorders and has also been shown to occur under certain conditions of traumatic brain injury (TBI). Currently, no effective treatments exist for the long-term effects of TBI. In some cases, TBI not only induces cognitive changes immediately post-injury, but also leads to increased incidence of neurodegeneration later in life. Growing evidence from our lab and others suggests that the oligomeric forms of tau initiate the onset and spread of neurodegenerative tauopathies. Previously, we have shown increased levels of brain-derived tau oligomers in autopsy samples from patients diagnosed with Alzheimer's disease. We have also shown similar increases in tau oligomers in animal models of neurodegenerative diseases and TBI. In the current study, we evaluated the presence of tau oligomers in blast-induced TBI. To test the direct impact of TBI-derived tau oligomer toxicity, we isolated tau oligomers from brains of rats that underwent either a blast- or a fluid percussion injury-induced TBI. Oligomers were characterized biochemically and morphologically and were then injected into hippocampi of mice overexpressing human tau (Htau). Mice were cognitively evaluated and brains were collected for immunological analysis after testing. We found that tau oligomers form as a result of brain injury in two different models of TBI. Additionally, these oligomers accelerated onset of cognitive deficits when injected into brains of Htau mice. Tau oligomer levels increased in the hippocampal injection sites and cerebellum, suggesting that tau oligomers may be responsible for seeding the spread of pathology post-TBI. Our results suggest that tau oligomers play an important role in the toxicity underlying TBI and may be a viable therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116695 | PMC |
http://dx.doi.org/10.1089/neu.2015.4262 | DOI Listing |
Commun Biol
January 2025
Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India.
Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.
View Article and Find Full Text PDFMol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFChembiochem
December 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!