Quantum spin Hall (QSH) insulators feature edge states that topologically protected from backscattering. However, the major obstacles to application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Based on first-principles calculations, we predict a class of large-gap QSH insulators in ethynyl-derivative functionalized stanene (SnC2X; X = H, F, Cl, Br, I), allowing for viable applications at room temperature. Noticeably, the SnC2Cl, SnC2Br, and SnC2I are QSH insulators with a bulk gap of ~0.2 eV, while the SnC2H and SnC2F can be transformed into QSH insulator under the tensile strains. A single pair of topologically protected helical edge states is established for the edge of these systems with the Dirac point locating at the bulk gap, and their QSH states are confirmed with topological invariant Z2 = 1. The films on BN substrate also maintain a nontrivial large-gap QSH effect, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of large-gap QSH insulators based on two-dimensional honeycomb lattices in spintronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700436 | PMC |
http://dx.doi.org/10.1038/srep18879 | DOI Listing |
Phys Chem Chem Phys
December 2024
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang 550025, People's Republic of China.
The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX (M = Ru and Os; X = As and Sb) monolayers are 2D topological insulators (TIs). The spin-orbit coupling (SOC) band gaps for RuAs, RuSb, OsAs, and OsSb monolayers are predicted to be 80, 131, 118, and 221 meV, respectively.
View Article and Find Full Text PDFNano Lett
November 2024
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.
Quantum spin Hall (QSH) insulators are topologically protected phases of matter in two dimensions that can support a pair of helical edge states surrounding an insulating bulk. A higher (even) number of helical edge state pairs is usually not possible in real materials because spin mixing would gap out the edge states. Here, we report experimental evidence for a QSH phase with one and two pairs of helical edge states in twisted bilayer WSe at Moiré hole filling factor ν = 2 and 4, respectively.
View Article and Find Full Text PDFACS Omega
July 2024
KU Leuven, Department of Physics and Astronomy, Semiconductor Physics Laboratory, Leuven B-3001, Belgium.
Two-dimensional (2D) topological insulators (TIs) or quantum spin Hall (QSH) insulators, characterized by insulating 2D electronic band structures and metallic helical edge states protected by time-reversal symmetry, offer a platform for realizing the quantum spin Hall effect, making them promising candidates for future spintronic devices and quantum computing. However, observing a high-temperature quantum spin Hall effect requires large-gap 2D TIs, and only a few 2D systems have been experimentally confirmed to possess this property. In this study, we employ first-principles calculations, combined with a structural search based on an evolutionary algorithm, to predict a class of 2D QSH insulators in hafnium halides, namely, HfF, HfCl, and HfBr with sizable band gaps of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
The emergence of an intrinsic quantum anomalous Hall (QAH) insulator with long-range magnetic order triggers unprecedented prosperity for combining topology and magnetism in low dimensions. Here, based on stacked two-dimensional LiFeTe, we confirm that magnetic coupling and topological electronic states can be simultaneously manipulated by just changing the layer numbers. Monolayer LiFeTe shows intralayer ferrimagnetic coupling, behaving as a QAH insulator with Chern number = 2.
View Article and Find Full Text PDFPhys Rev Lett
March 2024
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
The quantum spin hall (QSH) phase, also known as the 2D topological insulator, is characterized by protected helical edge modes arising from time reversal symmetry. While initially proposed as band insulators, this phase can also manifest in strongly correlated systems where conventional band theory fails. To overcome the challenge of simulating this phase in realistic correlated models, we propose a novel framework utilizing fermionic tensor network states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!