Energy transfer pathways between phycobiliproteins chromophores in the phycobilisome (PBS) core of the cyanobacterium Synechocystis sp. PCC 6803 were investigated. The computer 3D model of the PBS core with determination of chromophore to chromophore distance was created. Our kinetic equations based on this model allowed us to describe the relative intensities of the fluorescence emission of the short(peaked at 665 nm) and long-wavelength (peaked at 680 nm) chromophores in the PBS core at low and room temperatures. The difference of emissions of the PBS core at 77 and 293 K are due to the back energy transfer, which is observed at room temperature and is negligible at 77 K.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672915060149DOI Listing

Publication Analysis

Top Keywords

pbs core
16
energy transfer
12
transfer pathways
8
fluorescence emission
8
core 293
8
293 energy
8
core
5
pathways phycobilin
4
phycobilin chromophores
4
chromophores fluorescence
4

Similar Publications

This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.

View Article and Find Full Text PDF

Purpose: This study explores the potential interaction of brolucizumab with platelets and its effects on platelet activation and reactivity, crucial in retinal vasculitis and retinal vascular occlusion. Safety concerns remain of interest, although brolucizumab showed superior retinal efficacy and reduced injection frequency compared to other licensed anti-VEGF agents.

Methods: Resting and activated platelets of healthy volunteers were pretreated with brolucizumab at the following concentrations 0.

View Article and Find Full Text PDF

Construction of in situ modulated controlled growth of MOF-on-mof impedimetric assembly for the practical minimal level assessment of anti-mullerian hormone.

Biosens Bioelectron

December 2024

Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.

View Article and Find Full Text PDF

The purpose of this study was to investigate the reaction mechanism of wulfenite with an aqueous sodium sulfide solution and thereby provide guidance for the sulfidization flotation and sodium sulfide leaching of wulfenite. For this purpose, dissolution/leaching behavior analysis, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM) were performed. The dissolution/leaching analysis indicated that sodium sulfide can induce the dissolution of PbMoO.

View Article and Find Full Text PDF

In Silico Modeling of Myelin Oligodendrocyte Glycoprotein Disulfide Bond Reduction by Phosphine-Borane Complexes.

Pharmaceuticals (Basel)

October 2024

Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H3A 0G4, Canada.

Background: Neurodegenerative diseases can cause vision loss by damaging retinal ganglion cells in the optic nerve. Novel phosphine-borane compounds (PBs) can protect these cells from oxidative stress via the reduction of disulfide bonds. However, the specific targets of these compounds are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!