Preclinical imaging of the co-stimulatory molecules CD80 and CD86 with indium-111-labeled belatacept in atherosclerosis.

EJNMMI Res

Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland.

Published: December 2016

Background: The inflammatory nature of atherosclerosis provides a broad range of potential molecular targets for atherosclerosis imaging. Growing interest is focused on targets related to plaque vulnerability such as the co-stimulatory molecules CD80 and CD86. We investigated in this preclinical proof-of-concept study the applicability of the CD80/CD86-binding fusion protein belatacept as a probe for atherosclerosis imaging.

Methods: Belatacept was labeled with indium-111, and the binding affinity was determined with CD80/CD86-positive Raji cells. In vivo distribution was investigated in Raji xenograft-bearing mice in single-photon emission computed tomography (SPECT)/CT scans, biodistribution, and ex vivo autoradiography studies. Ex vivo SPECT/CT experiments were performed with aortas and carotids of ApoE KO mice. Accumulation in human carotid atherosclerotic plaques was investigated by in vitro autoradiography.

Results: (111)In-DOTA-belatacept was obtained in >70 % yield, >99 % radiochemical purity, and ~40 GBq/μmol specific activity. The labeled belatacept bound with high affinity to Raji cells. In vivo, (111)In-DOTA-belatacept accumulated specifically in Raji xenografts, lymph nodes, and salivary glands. Ex vivo SPECT experiments revealed displaceable accumulation in atherosclerotic plaques of ApoE KO mice fed an atherosclerosis-promoting diet. In human plaques, binding correlated with the infiltration by immune cells and the presence of a large lipid and necrotic core.

Conclusions: (111)In-DOTA-belatacept accumulates in CD80/CD86-positive tissues in vivo and in vitro rendering it a research tool for the assessment of inflammatory activity in atherosclerosis and possibly other diseases. The tracer is suitable for preclinical imaging of co-stimulatory molecules of both human and murine origin. Radiolabeled belatacept could serve as a benchmark for future CD80/CD86-specific imaging agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700042PMC
http://dx.doi.org/10.1186/s13550-015-0157-4DOI Listing

Publication Analysis

Top Keywords

co-stimulatory molecules
12
preclinical imaging
8
imaging co-stimulatory
8
molecules cd80
8
cd80 cd86
8
raji cells
8
cells vivo
8
apoe mice
8
atherosclerotic plaques
8
vivo
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!