Encapsulation of extremely hydrophobic substances such as SN-38 into nanoparticles, is a promising approach to solve the solubility issue and enable drug administration. Moreover, nanocarriers' tumor homing behavior, targeted and controlled release at the site of action will optimize therapeutic potency and decrease toxicity of the incorporated drug substance. However, the enormous drug hydrophobicity might limit the capacity for encapsulation as the premature drug precipitation will contribute to fast free drug crystal growth, low drug incorporation and huge waste of the active material. In this article we defined the optimal region for manufacturing of SN-38 loaded PEO-PPO-PEO/P(DL)LCL nanoparticles (NPs) with high efficacy of encapsulation, suitable particle size and different surface properties, using D-optimal design and nanoprecipitation as production method. Further we made an approach to investigate the interactions with macromolecules at the nano-bio interface which are predetermined by the physico-chemical and surface properties of the NPs, and are important determinants for the biological identity of the nanoparticles, the potential for evasion of the physiological barriers and the efficacy of localization at the site of action. Here we present in depth analysis of the behavior of two types of nanoparticles with different surface properties through structured protein interaction and bioreactivity experiments in order to presuppose NP performance and toxicological profile in biological environment.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201813666151130221806DOI Listing

Publication Analysis

Top Keywords

surface properties
12
nano-bio interface
8
site action
8
drug
6
peo-ppo-peo/polydl-lactide-co-caprolactone nanoparticles
4
nanoparticles carriers
4
carriers sn-38
4
sn-38 design
4
design optimization
4
optimization nano-bio
4

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.

View Article and Find Full Text PDF

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Dry deposition is an important yet poorly constrained process that removes reactive organic carbon from the atmosphere, making it unavailable for airborne chemical reactions and transferring it to other environmental systems. Using an aircraft-based measurement method, we provide large-scale estimates of total gas-phase organic carbon deposition rates and fluxes. Observed deposition rates downwind of large-scale unconventional oil operations reached up to 100 tC hour, with fluxes exceeding 0.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!