We investigated the effects of the insertion of a gadolinium-doped ceria (GDC) anodic functional layer (AFL) on the electrochemical performance of intermediate-temperature solid-oxide fuel cells (SOFCs). Fully stabilized yttria-stabilized zirconia (YSZ) was used as an oxygen-ion-conducting and support material. Nickel-Samaria-doped ceriathin film was used as an anode material, while screen-printed lanthanum strontium magnetite served as a cathode material. In order to enhance the interfacial reaction on the anode side, a GDC-AFL with a thickness of about 140 nm, deposited via radio-frequency sputtering, was inserted into the anode-electrolyte interface. SOFCs with and without a GDC-AFL were electrochemically characterized. In an intermediate temperature range of about 700 - 800 degrees C, the application of the GDC-AFL led to an increase in the peak power density of approximately 16%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.11529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!