Poly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface. The block copolymers were spin-coated onto silicon wafers, and protein adsorption experiments were carried out using fluorescein isothiocyanate conjugate-labeled bovine serum albumin. The fluorescence intensity of the protein adsorbed on the block copolymer surface was compared with that of a polystyrene film as a reference. The synthesized PGMA-g-PEG-b-PS film showed much lower fluorescence intensity than that of the PS film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.11216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!