We investigated the effects of a double active layer (DAL) and acetic acid stabilizer on zinc tin oxide (ZTO) thin-film transistors (TFTs) fabricated using a solution process. The DAL was composed of two layers created by a ZTO solution doped with the same or different percentiles of an atomic Sn concentration (30 at.%, 60 at.%). The electrical performance of the ZTO TFTs significantly was improved after we added acetic acid (AA) instead of monoethanolamine (MEA). This was accomplished by applying a type 2 DAL (bottom layer: Sn 60 at.%, top layer: Sn 30 at.%, 60/30) instead of other types (30/30 or 60/60). It was demonstrated that AA plays a role in lowering the decomposition temperature, enhancing the metal-oxygen bridge, and decreasing hydroxyl groups in the film. In addition, the type 2 DAL structure (60/30) lowered the Ioff of the ZTO TFT and controlled the carrier concentration in the channel. The best performances were obtained at a Sn concentration of 60 at.% in the bottom ZTO layer and 30 at.% in the top ZTO layer, with AA added as a stabilizer. The ZTO TFT exhibited an on/off ratio of 1.1 x 10(9), a saturation mobility of 5.04 cm2/V·s, a subthreshold slope of 0.11 V/decade, and a threshold voltage of 1.6 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.11200 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFFood Funct
January 2025
State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Shanghai, China.
Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt.
Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 311400, China.
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.
This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!