Unlabelled: Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691323PMC
http://dx.doi.org/10.1002/2014WR016086DOI Listing

Publication Analysis

Top Keywords

hydraulic fracturing
12
gas
10
numerical simulation
8
gas water
8
water transport
8
reservoir
8
reservoir stimulation
8
reservoir shallower
8
connecting pathway
8
gas release
8

Similar Publications

A new in situ fracturing-enhanced oxidative remediation for various low-permeability phenanthrene-contaminated soils: Oxidation effectiveness and kinetics of potassium permanganate.

J Hazard Mater

January 2025

Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China.

A new in situ fracturing-enhanced oxidative remediation approach was recommended in this study to achieve rapid and efficient remediation of low-permeability contaminated sites. The objective of this study was to evaluate the effects of permeability and potassium permanganate (KMnO) concentration on the oxidation effectiveness and kinetics of KMnO in phenanthrene (PHE)-contaminated soil through rigid-wall hydraulic conductivity tests and a series of laboratory experiments. The results indicate that for various low-permeability contaminated soils, there was a critical KMnO concentration to significantly reduce the remediation time and a critical Darcy velocity to meet remediation goals.

View Article and Find Full Text PDF

It is a common occurrence in the fracture processes of deep carbonate reservoirs that the fracturing construction pressure during hydraulic fracturing operation exceeds 80 MPa. The maximum pumping pressure is determined by the rated pressure of the pumping pipe equipment and the reservoir characteristics, which confine the fracture to the target area. When the pump pressure exceeds the safety limit, hydraulic fracturing has to reduce the construction displacement to prevent potential accidents caused by overpressure.

View Article and Find Full Text PDF

As hydraulic fracturing becomes increasingly prevalent in the oil and gas industry, there is a growing need to develop more cost-effective and sustainable technologies, particularly concerning the materials used. Proppants play a vital role in hydraulic fracturing by ensuring that fractures remain conductive and can withstand the pressure exerted by the surrounding strata. One key parameter for evaluating proppants is their compressive strength, especially under harsh environmental conditions.

View Article and Find Full Text PDF

The rapid growth of unconventional natural gas development (UNGD), also known as hydraulic fracturing, has raised concerns of potential exposures to hazardous chemicals. Few studies have examined the risk of childhood cancer from exposure to UNGD. A case-control study included 498 children diagnosed with leukemia, lymphoma, central nervous system neoplasms, and malignant bone tumors during the period 2010-2019 identified through the Pennsylvania Cancer Registry.

View Article and Find Full Text PDF

Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!