Reaction of cyclic secondary amines with 1-alkynes and copper(I) chloride at 110-120 °C gives the corresponding alkynylcopper complex, which adds to the iminium ion intermediate formed in situ by hydroamination of 1-alkynes to give the corresponding propargylamine derivatives in up to 94% yield and 99% regioselectivity. The diastereomerically pure chiral propargylamines were obtained in 23-89% yield using optically active 2-benzyl morpholine and N-methyl camphanyl piperazine. These chiral propargylamines are readily converted to the corresponding trisubstitued chiral allenes in 71-89% yields with up to 99% ee upon reaction with ZnBr2 at 120 °C. The results are discussed considering mechanisms involving diastereoselective addition of alkynylcopper complex formed in situ to iminium ions formed in situ regioselectively to produce the corresponding propargylamines, which in turn give the chiral allenes with very high enantioselectivity via an intramolecular 1,5-hydrogen shift in the presence of zinc bromide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b02554DOI Listing

Publication Analysis

Top Keywords

chiral allenes
12
formed situ
12
alkynylcopper complex
8
chiral propargylamines
8
chiral
5
diastereoselective synthesis
4
synthesis tetrasubstituted
4
propargylamines
4
tetrasubstituted propargylamines
4
propargylamines hydroamination
4

Similar Publications

A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.

View Article and Find Full Text PDF

Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.

View Article and Find Full Text PDF

Enantioselective Vinylogous Addition of Enones to Allenes Enabled by Synergistic Borane/Palladium Catalysis.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.

View Article and Find Full Text PDF

Photoredox/Cobalt-Catalyzed Chemo-, Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,1-Disubstituted Allenes and Cyclobutenes.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.

View Article and Find Full Text PDF

We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!