Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules.

J Appl Toxicol

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 21702, USA.

Published: September 2016

Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064727PMC
http://dx.doi.org/10.1002/jat.3278DOI Listing

Publication Analysis

Top Keywords

chemical exposures
16
liver kidney
12
injuries caused
8
diagnostic tests
8
modules
7
chemical
6
injuries
5
systems toxicology
4
toxicology chemically
4
chemically induced
4

Similar Publications

Disruptive multiple cell death pathways of bisphenol-A.

Toxicol Mech Methods

January 2025

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India.

Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

Nowadays, Egypt is treating the Nile River Water to produce drinking water, and this process generates large amounts of waste, around 635 million m annually, which is called water treatment plant sludge (WTPS). This WTPS cost the government around 30 million US dollars to return it back to the Nile River in addition to negatively affecting the environment. Therefore, there is an urgent need to find environmentally friendly alternatives that reduce the impact of such an issue.

View Article and Find Full Text PDF

Application of three statistical approaches to explore effects of dietary intake of multiple persistent organic pollutants on ER-positive breast cancer risk in the French E3N cohort.

Sci Rep

January 2025

Inserm, Gustave Roussy, Centre for Research in Epidemiology and Population Health (CESP), "Exposome, Heredity, Cancer, and Health" Team, Université Paris-Saclay, UVSQ, 12 Avenue Paul Vaillant Couturier, 94805, Villejuif, France.

Persistent organic pollutants (POPs) are a group of organic chemical compounds. Contradictory results have emerged in epidemiological studies attempting to elucidate their relationship with breast cancer risk. This study explored the relationship between dietary exposures to multiple POPs and ER-positive breast cancer risk in the French E3N cohort study, using three different approaches to handle multicollinearity among exposures.

View Article and Find Full Text PDF

Selected microwave irradiation effectively inactivates airborne avian influenza A(H5N1) virus.

Sci Rep

January 2025

The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!