Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair.

Stem Cell Reports

Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada. Electronic address:

Published: January 2016

Here, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on skin-derived precursors (SKPs), a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated five such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice. Moreover, SKPs isolated from drug-treated skin displayed long-term increases in self-renewal when cultured in basal growth medium without drugs. Both alprostadil and trimebutine maleate likely mediated increases in SKP self-renewal by moderate hyperactivation of the MEK-ERK pathway. These findings identify candidates for potential clinical use in human skin repair, and provide support for the idea that pharmacological activation of endogenous tissue precursors represents a viable therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719140PMC
http://dx.doi.org/10.1016/j.stemcr.2015.12.002DOI Listing

Publication Analysis

Top Keywords

skin repair
12
alprostadil trimebutine
8
trimebutine maleate
8
skin
5
identification drugs
4
drugs regulate
4
regulate dermal
4
dermal stem
4
stem cells
4
cells enhance
4

Similar Publications

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Sweet syndrome (SS), which is characterised by fever and erythematous tender skin lesions, has been shown to be associated with lymphoma. However, there are limited reported experiences on the wound care of SS in patients with lymphoma. This case report presents the wound care of SS in a patient with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALK+ALCL).

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the performance of an innovative multicomponent compression system in a single bandage (UrgoK1, Laboratoires Urgo, France) in the treatment of patients with venous leg ulcers (VLUs) and/or lower limb oedema in everyday practice.

Method: A prospective, observational, clinical study with the evaluated compression system was conducted in 39 centres in Germany between March 2022 and July 2023. Main outcomes included a description of the treated patients, changes in wound healing and oedema progression, local tolerance and acceptability of the compression system.

View Article and Find Full Text PDF

Exudate management is essential for creating a moist wound environment that promotes optimal healing, especially in highly exuding wounds, where choosing an appropriate wound dressing to handle high volumes of exudate is a key part of the wound management strategy. Superabsorbent wound dressings (SWDs) have been designed to absorb and retain large amounts of exudate. Thus, they are advocated for management of wounds with moderate-to-high levels of exudate to reduce the risk of leakage and damage to the periwound skin.

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!