JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4938166 | DOI Listing |
Polymers (Basel)
January 2025
Plasma and Radiation Physics, National Institute for Laser, 077125 Magurele, Romania.
CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Undergraduate student, School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China.
Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.
Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.
Polymers (Basel)
December 2024
Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing MeSiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high hardness of crosslinked products when using phenyltris(dimethylsiloxy)silane or 1,1,5,5-tetramethyl-3,3-diphenyl trisiloxane as crosslinking agents in the preparation of silicone gel. NMR, FT-IR, and GPC characterized the structure and molecular weight information of the prepared oligomers.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Background: This in vitro study evaluated the efficacy of professional and home-use fluoride regimens for protecting irradiated enamel, undergoing pH cycling resembling xerostomia.
Methods: Sixty human premolar teeth were irradiated with a total dose of 70 Gy and subsequently sectioned into 3 × 3 cm enamel slabs. These slabs were randomly distributed into five groups (n = 12 per group): professional-use groups received fluoride varnish either weekly (FV1) or biweekly (FV2); home-use groups applied 5000 ppm (FT5) or 1450 ppm (FT) fluoride toothpaste; and a control group (control) received no treatment.
Chemosphere
February 2025
School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:
In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!