Force feedback vessel ligation simulator in knot-tying proficiency training.

Am J Surg

Department of Surgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0737, USA. Electronic address:

Published: February 2016

Background: Tying gentle secure knots is an important skill. We have developed a force feedback simulator that measures force exerted during knot tying. This pilot study examines the benefits of this simulator in a deliberate practice curriculum.

Methods: The simulator consists of silastic tubing with a force sensor. Knot quality was assessed using digital caliper measurement. Participants performed 10 vessel ligations as a pretest, then were shown force readings and tied knots until reaching proficiency targets. Average peak forces precurriculum and postcurriculum were compared using Student t test.

Results: Participants exerted significantly less force after completing the curriculum (.61 N ± .22 vs 1.42 N ± .53, P < .001), and had fewer air knots (10% vs 27%). The curriculum was completed in an average of 19.4 ± 6.27 minutes and required an average of 11.7 ± 4.03 knots to reach proficiency.

Conclusions: This study demonstrates the feasibility of real-time feedback in learning to tie delicate knots. The curriculum can be completed in a reasonable amount of time, and may also work as a warm-up exercise before a surgical case.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjsurg.2015.09.009DOI Listing

Publication Analysis

Top Keywords

force feedback
8
curriculum completed
8
force
6
knots
5
feedback vessel
4
vessel ligation
4
simulator
4
ligation simulator
4
simulator knot-tying
4
knot-tying proficiency
4

Similar Publications

In a complex dynamical system, noise, feedback, and external forces shape behavior that can range from regularity to high-dimensional chaos. Multiple feedback sources can significantly alter its dynamics, potentially even suppressing the system's output. This study investigates the impact of competing feedback sources on a stochastic complex dynamical system using a photonic neuron-a diode laser with external optical feedback.

View Article and Find Full Text PDF

To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.

View Article and Find Full Text PDF

An Inanimate Intracorporeal Anastomosis Model With Real-Time Force Feedback: An Initial Study.

J Surg Res

January 2025

Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands.

Introduction: Laparoscopic intestinal anastomosis requires specific technical skills and should be trained in a safe simulation environment before performing surgery in daily practice. However, anastomosis simulation training with objective feedback is not widely available. This study aimed to analyze a laparoscopic intestinal anastomosis training task that utilizes objective force, motion, and time measurements.

View Article and Find Full Text PDF

Structural design usually adopts uniform temperature action. However, during the actual construction of the structure, the temperature field acting on the structure is inhomogeneous. Therefore, the simulation of the construction of statically indeterminate steel structures considering only the uniform temperature field cannot truly reflect the temperature action after structural molding and the evolution of the stress performance of the temporary stress system of structural construction.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!