The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4938012 | DOI Listing |
J Phys Chem B
October 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The impact of conformational change on the ground and excited states of seven perylene diimide (PDI)-based dimeric systems is examined by introducing longitudinal shift, transverse shift, and rotation of one monomer with respect to another. The minimum energy conformations are compared via an energy decomposition analysis. The heteroatom-substituted dimeric systems, such as B N-embedded PDI, trans-thio-PDI (trans-S-PDI), and N-PDI, show BN···π, C═S···π, and N···H interactions that survive over a longer range of longitudinal and transverse shifts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2024
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Hot carriers rapidly lose kinetic energies on a subpicosecond time scale, posing significant limitations on semiconductors' photon-conversion efficiencies. To slow the hot carrier cooling, the phonon bottleneck effect is constructed prevalently in quantum-confined structures with discrete energy levels. However, the maximum energy separation (Δ) between the energy levels is in a range of several hundred meV, leading to unsatisfactory cooling time.
View Article and Find Full Text PDFChem Soc Rev
October 2023
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling.
View Article and Find Full Text PDFAdv Mater
June 2022
Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength.
View Article and Find Full Text PDFJ Chem Phys
December 2015
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!