High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 6(1) levels of C6H6 or C6D6 are split into 6a(1) and 6b(1) in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4937950DOI Listing

Publication Analysis

Top Keywords

deuterated benzenes
12
spectroscopic study
4
study deuterated
4
benzenes high-resolution
4
high-resolution laser
4
laser spectroscopy
4
rotational
4
spectroscopy rotational
4
rotational structure
4
structure state
4

Similar Publications

The recent detection of benzonitrile (CHCN) in the interstellar medium is one of the most fascinating discoveries in astrochemistry and molecular astrophysics. However, the mechanism of its formation in interstellar ices remains unclear. Here, we report the first evidence for the direct synthesis of benzonitrile through the radiation-induced transformations of an isolated CH···HCN complex in inert rigid media at cryogenic temperature (4.

View Article and Find Full Text PDF

One critical issue in hydrogen/deuterium exchange mass spectrometry (HDX MS) analysis is the deleterious back exchange. Herein, we report that when matrix-assisted laser desorption/ionization (MALDI) is used, the MALDI process itself can also cause significant back exchange. The back exchange occurred inside the reactive MALDI plume was investigated by depositing a fully deuterated sample prepared in DO on top of a preloaded dried layer of matrix.

View Article and Find Full Text PDF

Evaluating deuterated-xylene for use as a fusion neutron spectrometer.

Rev Sci Instrum

December 2024

Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.

The spectrum of neutrons emitted by thermonuclear plasmas encodes information about the fuel ion distribution function. Measuring these fast neutron spectra with sufficient resolution allows for the measurement of plasma properties such as the ion temperature and strength and energy of fast ion populations. Liquid organic scintillators are a commonly used fast neutron detection technology because of their high detection efficiency and ability to discriminate between neutrons and gammas.

View Article and Find Full Text PDF

Ultrashort pulses can excite or ionize molecules and populate coherent electronic wave packets, inducing complex dynamics. In this Letter, we simulate the coupled electron-nuclear dynamics upon ionization to different electronic wave packets of (deuterated) benzene and fluoro-benzene molecules, quantum mechanically and in full dimensionality. In fluoro-benzene, the calculations unravel both interstate and intrastate quantum interferences that leave clear signatures of attochemistry and charge-directed dynamics in the shape of the autocorrelation function.

View Article and Find Full Text PDF

Phenyl Radical Activates Molecular Hydrogen Through Protium and Deuterium Tunneling.

Angew Chem Int Ed Engl

December 2024

Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.

Activating dihydrogen, H, is a challenging endeavor typically achieved using transition metal centers. Pure main-group compounds capable of this are rare and have emerged in recent decades. These systems rely on synergistic donor-acceptor interactions with H's antibonding σ* and bonding σ orbital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!