A continuous spectrophotometric enzyme-coupled assay for deoxynucleoside triphosphate triphosphohydrolases.

Anal Biochem

Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy; CSGI, University of Firenze, 50019 Sesto Fiorentino, FI, Italy. Electronic address:

Published: March 2016

We describe a continuous, spectrophotometric, enzyme-coupled assay useful to monitor reactions catalyzed by nucleoside triphosphohydrolases. In particular, using Escherichia coli deoxynucleoside triphosphohydrolase (Dgt), which hydrolyzes dGTP to deoxyguanosine and tripolyphosphate (PPPi) as the enzyme to be tested, we devised a procedure relying on purine nucleoside phosphorylase (PNPase) and xanthine oxidase (XOD) as the auxiliary enzymes. The deoxyguanosine released by Dgt can indeed be conveniently subjected to phosphorolysis by PNPase, yielding deoxyribose-1-phosphate and guanine, which in turn can be oxidized to 8-oxoguanine by XOD. By this means, it was possible to continuously detect Dgt activity at 297 nm, at which wavelength the difference between the molar extinction coefficients of 8-oxoguanine (8000 M(-1) cm(-1)) and guanine (1090 M(-1) cm(-1)) is maximal. The initial velocities of Dgt-catalyzed reactions were then determined in parallel with the enzyme-coupled assay and with a discontinuous high-performance liquid chromatography (HPLC) method able to selectively detect deoxyguanosine. Under appropriate conditions of excess auxiliary enzymes, the activities determined with our continuous enzyme-coupled assay were quantitatively comparable to those observed with the HPLC method. Moreover, the enzyme-coupled assay proved to be more sensitive than the chromatographic procedure, permitting reliable detection of Dgt activity at low dGTP substrate concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744544PMC
http://dx.doi.org/10.1016/j.ab.2015.11.027DOI Listing

Publication Analysis

Top Keywords

enzyme-coupled assay
20
continuous spectrophotometric
8
spectrophotometric enzyme-coupled
8
auxiliary enzymes
8
dgt activity
8
hplc method
8
enzyme-coupled
5
assay
5
assay deoxynucleoside
4
deoxynucleoside triphosphate
4

Similar Publications

We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing.

View Article and Find Full Text PDF
Article Synopsis
  • * Free fatty acids (FFAs) increase in response to the decline in phospholipids and exhibit an opposite trend in their levels, indicating a relationship between the two.
  • * The study suggests severe neuron damage due to KA treatment is linked to increased cell membrane permeability and abnormalities in the endomembrane system, which may contribute to FFA release.
View Article and Find Full Text PDF

Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses.

View Article and Find Full Text PDF

Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated.

View Article and Find Full Text PDF

Ancestral l-amino acid oxidase: From substrate scope exploration to phenylalanine ammonia-lyase assay.

J Biotechnol

November 2023

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania. Electronic address:

In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!