We describe a continuous, spectrophotometric, enzyme-coupled assay useful to monitor reactions catalyzed by nucleoside triphosphohydrolases. In particular, using Escherichia coli deoxynucleoside triphosphohydrolase (Dgt), which hydrolyzes dGTP to deoxyguanosine and tripolyphosphate (PPPi) as the enzyme to be tested, we devised a procedure relying on purine nucleoside phosphorylase (PNPase) and xanthine oxidase (XOD) as the auxiliary enzymes. The deoxyguanosine released by Dgt can indeed be conveniently subjected to phosphorolysis by PNPase, yielding deoxyribose-1-phosphate and guanine, which in turn can be oxidized to 8-oxoguanine by XOD. By this means, it was possible to continuously detect Dgt activity at 297 nm, at which wavelength the difference between the molar extinction coefficients of 8-oxoguanine (8000 M(-1) cm(-1)) and guanine (1090 M(-1) cm(-1)) is maximal. The initial velocities of Dgt-catalyzed reactions were then determined in parallel with the enzyme-coupled assay and with a discontinuous high-performance liquid chromatography (HPLC) method able to selectively detect deoxyguanosine. Under appropriate conditions of excess auxiliary enzymes, the activities determined with our continuous enzyme-coupled assay were quantitatively comparable to those observed with the HPLC method. Moreover, the enzyme-coupled assay proved to be more sensitive than the chromatographic procedure, permitting reliable detection of Dgt activity at low dGTP substrate concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744544 | PMC |
http://dx.doi.org/10.1016/j.ab.2015.11.027 | DOI Listing |
Biosensors (Basel)
October 2024
Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China. Electronic address:
Int J Biol Macromol
May 2024
Department of Molecular Sciences, Macquarie University, Sydney 2109, NSW, Australia. Electronic address:
Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses.
View Article and Find Full Text PDFMikrochim Acta
December 2023
Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, 79005, Ukraine.
Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated.
View Article and Find Full Text PDFJ Biotechnol
November 2023
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania. Electronic address:
In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!