In this study, an operating room simulation environment was adapted to include quadraphonic speakers, which were used to recreate a composed clinical soundscape. To assess validity of the composed soundscape, several acoustic parameters of this simulated environment were acquired in the presence of alarms only, background noise only, or both. These parameters were also measured for comparison from size-matched operating rooms at Jackson Memorial Hospital. The parameters examined included sound level, reverberation time, and predictive metrics of speech intelligibility in quiet and noise. It was found that the sound levels and acoustic parameters were comparable between the simulated environment and the actual operating rooms. The impact of the background noise on the perception of medical alarms was then examined, and was found to have little impact on the audibility of the alarms. This study is a first in kind report of a comparison between the environmental and psychological acoustical parameters of a hospital simulation environment and actual operating rooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4936947 | DOI Listing |
Acta Parasitol
January 2025
Research Center for Hydatid Disease in Iran, Institute of Infectious Diseases and Tropical Medicine, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Objective: Different Acanthamoeba species are among the most ubiquitous organisms causing serious diseases in humans including central nervous system (CNS) and eye infections. Contact lenses, lens care solutions and the hospital environments particularly the indoor and outdoor environments of ophthalmology wards where people are present with different types of eye diseases, are the potential sources of human infection. The purpose of the present study was the molecular investigation of free-living amoebae in the used contact lenses, lens care solutions and hospital samples from the ophthalmology wards and operating rooms in a referral hospital in southeastern Iran.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Division of Spine, Department of Orthopaedic Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore.
Spine surgery has undergone significant advancements, particularly with regard to robotic systems that enhance surgical techniques and improve patient outcomes. As these technologies become increasingly integrated into surgical practice, it is essential to evaluate their added value and cost savings. Hence, this study compared robot-assisted and navigation-based spine surgery, focusing on surgical efficiency.
View Article and Find Full Text PDFAm J Surg
December 2024
Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
The healthcare sector, particularly operating rooms (ORs), generates significant waste, contributing to global environmental pollution. This scoping review aimed to assess global recycling practices in ORs across various surgical specialties, identifying key barriers and strategies for improvement. A comprehensive literature search using PubMed and Embase and PRISMA reporting guidelines yielded 35 studies for inclusion.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Medicine, Surgery and Healthcare Sciences, University of Trieste, Strada Di Fiume 447, 34149, Trieste, Italy.
Background: Climate change poses significant challenges to global health, exacerbated by healthcare systems' carbon footprint and waste generation. Surgical activities contribute to these impacts, necessitating sustainable practices to mitigate environmental harm. This study aims to assess the feasibility and effectiveness of a recycling program in reducing waste, carbon emissions, and disposal costs in the operating rooms (ORs).
View Article and Find Full Text PDFPlast Surg (Oakv)
January 2025
Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
Introduction: Every industry has greenhouse gas emissions, with healthcare a significant contributor. In Canada, the healthcare sector is directly and indirectly responsible for 4.6% of the country's greenhouse gas emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!