Synchronization patterns in geometrically frustrated rings of relaxation oscillators.

Chaos

Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.

Published: December 2015

Diffusively coupled chemical oscillators can exhibit a wide variety of complex spatial patterns. In this paper, we show that a ring of relaxation oscillators diffusively coupled through the inhibitory species leads to remarkable spatiotemporal patterns in the regime where there is a large separation of time scales between the activator and the inhibitor dynamics. The origin of these complex patterns can be traced back to a preponderance of antiphase synchronized states in the space of attractors. We provide an analytical explanation for the existence and stability of the antiphase synchronized states by examining the limit of extreme time scale separation. Numerical results on rings with small numbers of oscillators show that an explosion of patterns occurs for a ring with five oscillators.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4936246DOI Listing

Publication Analysis

Top Keywords

relaxation oscillators
8
oscillators diffusively
8
diffusively coupled
8
antiphase synchronized
8
synchronized states
8
oscillators
5
synchronization patterns
4
patterns geometrically
4
geometrically frustrated
4
frustrated rings
4

Similar Publications

Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.

View Article and Find Full Text PDF

Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.

Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.

Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

The extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 10-10 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.

View Article and Find Full Text PDF

Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!