Fractographic principles applied to Y-TZP mechanical behavior analysis.

J Mech Behav Biomed Mater

Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil. Electronic address:

Published: April 2016

The purpose of this study was to evaluate the use of fractography principles to determine the fracture toughness of Y-TZP dental ceramic in which KIc was measured fractographically using controlled-flaw beam bending techniques and to correlate the flaw distribution with the mechanical properties. The Y-TZP blocks studied were: Zirconia Zirklein (ZZ); Zirconcad (ZCA); IPS e.max ZirCad (ZMAX); and In Ceram YZ (ZYZ). Samples were prepared (16mm×4mm×2mm) according to ISO 6872 specifications and subjected to three-point bending at a crosshead speed of 0.5mm/min. Weibull probability curves (95% confidence bounds) were calculated and a contour plot with the Weibull modulus (m) versus characteristic strength (σ0) was used to examine the differences among groups. The fractured surface of each specimen was inspected in a scanning electron microscope (SEM) for qualitative and quantitative fractographic analysis. The critical defect size (c) and fracture toughness (KIc) were estimated. The fractured surfaces of the samples from all groups showed similar fractographic characteristics, except ZCA showed pores and defects. Fracture toughness and the flexural strength values were not different among the groups except for ZCA. The characteristic strength (p<0.05) of ZZ (η=920.4) was higher than the ZCA (η=651.1) and similar to the ZMAX (η=983.6) and ZYZ (η=1054.8). By means of quantitative and qualitative fractographic analysis, this study showed fracture toughness and strength that could be correlated to the observable microstructural features of the evaluated zirconia polycrystalline ceramics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2015.12.006DOI Listing

Publication Analysis

Top Keywords

fracture toughness
12
characteristic strength
8
fractographic principles
4
principles applied
4
applied y-tzp
4
y-tzp mechanical
4
mechanical behavior
4
behavior analysis
4
analysis purpose
4
purpose study
4

Similar Publications

The effect of SiC and YO inclusion on microstructure and mechanical properties of Al 5052 composite fabricated through Friction Stir Process.

Heliyon

January 2025

AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.

A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.

View Article and Find Full Text PDF

Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!