The ability to control catalytic activity and selectivity via in situ changes in catalyst oxidation-state represents an intriguing tool for enhanced polymerization control. Herein, we report foundational evidence that catalysts bearing redox-active moieties may be used to synthesize high molecular weight polyethylene with tailored microstructure. The ability to modulate branching density and identity is facilitated by ligand-based redox chemistry, and is realized via the addition of chemical reductants into the polymerization reactor. Detailed GPC and NMR analyses demonstrate that branching density may be altered by up to ∼ 30% as a function of in situ added reductant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b12322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!