It has been proposed that the Notch signaling pathway may serve a pivotal role in cellular differentiation, proliferation and apoptosis. However, the function of Notch signaling in gastric cancer stem cells (GCSCs) is largely unknown. The present study aimed to delineate the role of the Notch1 pathway in GCSCs and during epithelial-mesenchymal transition (EMT). Flow cytometry was used to isolate CD44 cells from the human gastric cancer cell line, MKN45. CD44 cells displayed the characteristics of CSCs and exhibited higher Notch1 expression compared with CD44 cells. To investigate the role of the Notch1 pathway in GCSCs, CD44 cells were treated with the γ-secretase inhibitor DAPT. DAPT treatment inhibited the expression of the Notch1 downstream target Hes1 and EMT markers, suppressed the properties of CSCs and impaired the invasion and proliferation capabilities of CD44 cells. In addition, intraperitoneal treatment with DAPT effectively inhibited the growth of CD44 cell xenograft tumors. The present study indicated that CD44 GCSCs possess the characteristics of CSCs and that the Notch1 pathway serves a critical role in the maintenance of CSCs and EMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665879PMC
http://dx.doi.org/10.3892/ol.2015.3727DOI Listing

Publication Analysis

Top Keywords

cd44 cells
24
notch1 pathway
12
cd44
8
epithelial-mesenchymal transition
8
γ-secretase inhibitor
8
inhibitor dapt
8
notch signaling
8
gastric cancer
8
role notch1
8
pathway gcscs
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

Background: Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear.

Methods: This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.

View Article and Find Full Text PDF

A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition.

Int J Biol Macromol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:

Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!