The present study aimed to determine if the standardized uptake value (SUV) determined with F-FDG PET-CT can be used to predict radiation pneumonitis (RP) in lung cancer patients who receive radiotherapy. A total of 40 patients with non-small cell lung cancer received F-FDG PET-CT examinations prior to and following radiotherapy. The average SUV of lung tissue prior to and following radiation were measured at differing radiation doses. SUV differences between patients with and without RP, and the SUV ratio of the irradiated lung tissues compared with that of non-irradiated lung tissues (L/B) were compared. There were no differences in the mean SUV between the RP and no RP groups prior to radiotherapy. There were also no significant differences in the mean SUV of lung tissue within groups or between the no RP and RP groups with radiation doses of <5 Gy, 5 to ≤14.9 Gy and 15 to ≤34.9 Gy (all P>0.05) following radiotherapy. There were, however, statistically significant differences in the mean SUV of lung tissue within groups or between the no RP and RP groups with doses of ≥60 Gy prior to therapy and 35 to ≤59.9 Gy and ≥60 Gy following therapy (all P<0.05). When the L/B ratio was ≥3, the incidence of RP was 50%, and when the L/B ratio was ≥2.5 the incidence was 40.7%. When the L/B ratio was <2, there were no cases of RP. In conclusion, the present study indicates that F-FDG PET-CT can be used to predict RP by L/B ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665373PMC
http://dx.doi.org/10.3892/ol.2015.3637DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
suv lung
12
lung tissue
12
differences suv
12
standardized uptake
8
radiation pneumonitis
8
lung
8
f-fdg pet-ct
8
prior radiotherapy
8
radiation doses
8

Similar Publications

Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics.

J Breath Res

January 2025

School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.

Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.

View Article and Find Full Text PDF

Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.

View Article and Find Full Text PDF

A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!