Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771045PMC
http://dx.doi.org/10.1177/2331216515616941DOI Listing

Publication Analysis

Top Keywords

nonnegative matrix
8
matrix factorization
8
speech perception
8
normal hearing
8
hearing subjects
8
advanced combination
8
combination encoder
8
speech
7
sparse nonnegative
4
factorization strategy
4

Similar Publications

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.

View Article and Find Full Text PDF

Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods.

J Mol Neurosci

January 2025

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.

View Article and Find Full Text PDF

T cell receptor signaling pathway subgroups and construction of a novel prognostic model in osteosarcoma.

Heliyon

January 2025

Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Background: T cell receptor (TCR) signaling pathway is closely related to tumor progress and immunotherapy. This study aimed to explore the clinical significance, prognosis, immune infiltration and chemotherapy sensitivity of TCR in osteosarcoma (OS).

Material And Methods: OS data were obtained from TARGET and GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!