PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response.

Cardiovasc Intervent Radiol

Department of Radiation Oncology, Washington University, Campus Box 8224, 4921 Parkview Place, St. Louis, MO, 63110, USA.

Published: June 2016

Purpose: The purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ((90)Y) microsphere radioembolization.

Materials And Methods: 26 patients undergoing lobar treatment with (90)Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging. Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.

Results: A total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.

Conclusions: PET/MRI of (90)Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of (90)Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858549PMC
http://dx.doi.org/10.1007/s00270-015-1285-yDOI Listing

Publication Analysis

Top Keywords

90y microsphere
8
follow-up imaging
8
response
5
dose
5
pet/mri
4
pet/mri hepatic
4
hepatic 90y
4
microsphere deposition
4
deposition determines
4
determines individual
4

Similar Publications

Background: In radioembolization therapy for hepatic malignancies, the accurate estimation of lung shunt fraction (LSF) is crucial to minimize the risk of radiation-induced pneumonitis and fibrosis due to hepatopulmonary shunting of yttrium-90 (90Y)-microspheres. This study aimed to compare the accuracy and precision of LSF estimation using technetium-99m macroaggregated albumin single photon emission computed tomography ([99mTc]Tc-MAA SPECT) LSF, [99mTc]Tc-MAA planar LSF, and 90Y PET LSF in patients undergoing 90Y-radioembolization.

Material And Methods: A retrospective study was conducted involving 15 patients diagnosed with hepatocellular carcinoma (HCC) or liver metastases and planned to undergo transarterial radioembolization with 90Y SirSpheres after multidisplinary team discussion.

View Article and Find Full Text PDF

Background: Prior studies have established that macroaggregated albumin (MAA)-SPECT/CT offers more robust lung shunt fraction (LSF) and lung mean absorbed dose (LMD) estimates in Y radioembolization in comparison to planar imaging. However, incomplete SPECT/CT coverage of the lungs is common due to clinical workflows, complicating its potential use for LSF and LMD calculations. In this work, lung truncation in MAA-SPECT/CT was addressed via correction strategies to improve Y treatment planning.

View Article and Find Full Text PDF

Tc/Y radiolabeled biodegradable gel microspheres for lung shutting fraction assessment and radioembolization in hepatocellular carcinoma theranostics.

Mater Today Bio

December 2024

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Transarterial radioembolization (TARE) is a well-established clinical therapy for the treatment of patients with intermediate to advanced hepatocellular carcinoma (HCC) or those who are ineligible for radical treatment. However, commercialized radioactive microspheres still have some issues, such as high density, complicated preparation, non-biodegradability. Furthermore, the use of different radioactive microspheres during TARE and lung shunt fraction assessment has led to inconsistencies in biodistribution in certain cases.

View Article and Find Full Text PDF

Albi score predicts overall survival (OS) in patients with hepatocellular carcinoma (HCC) treated with selective internal radiation therapy (SIRT).

Radiol Med

December 2024

Interventional Radiology Unit, Department of Diagnostic Imaging and Interventional Radiology, A.O.U. Città Della Salute e della Scienza Di Torino, Turin, Italy.

Purpose: We aimed to evaluate the prognostic impact of baseline clinical features and treatment procedure, including liver function measured with albumin-bilirubin (ALBI) formula and dosing methods in HCC patients treated with SIRT.

Material And Methods: The study includes 82 consecutive patients with liver-dominant HCC treated with SIRT (Y glass microspheres, TheraSphereTM) between October 2014 and September 2023. Twenty-five patients were treated with standard dosimetry, while for remaining patients, multi-compartment dosimetry was performed using Simplicit90YTM software.

View Article and Find Full Text PDF

Radiation Pneumonitis after Yttrium-90 Radioembolization: A Systematic Review.

J Vasc Interv Radiol

October 2024

Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center, Tampa, Florida; Department of Radiology, Semmelweis University, Budapest, Hungary.

Purpose: To evaluate the available evidence of lung dosimetry and radiation pneumonitis (RP).

Materials And Methods: The guideline regarding the maximum tolerated lung dose for yttrium-90 (Y) radioembolization is an expert opinion (Level 5 evidence) based on a case series of 5 patients and recommends keeping the absorbed radiation dose to the lungs below 30 Gy per treatment and 50 Gy in a lifetime to prevent RP. The current understanding of the risks of RP is minimal despite its debilitating nature and high mortality rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!