In the present study, differences in hepatitis B surface antigen (HBsAg)-specific memory B-cell responses between low and high responders to hepatitis B vaccine (HepB), based on levels of antibodies against HBsAg (anti-HBs), were determined. In addition, HBsAg specific T-cell responses between high (anti-HBs level >20,000 IU/L) and low (anti-HBs level <1500 IU/L) responders were compared. Numbers of HBsAg-specific B-cells, plasma immunoglobulin G (Ig) levels, and T-cell cytokine concentrations were measured in low and high responders directly before and one month after the second booster vaccination. In advance, an Enzyme-linked Immunosorbent Spot (ELISpot) Assay was optimized for the determination of HBsAg-specific B-cell responses. The number of HBsAg-specific B-cells was significantly higher (p<0.01) in the high responder group compared to the low responder group after a booster vaccination with HepB. In addition, the plasma IgG levels and numbers of HBsAg-specific B-cells were significantly correlated (RS=0.66, p<0.01). The HBsAg-specific Th1 cell response showed the same values in the low and high responder group and did not change by the booster vaccination with HepB. However, a significant correlation (RS=0.6975, p=0.007) between the IL-13 levels and the plasma IgG levels post-booster was found. Subsequently, the IL-13 level in the high-responder group post-booster was significantly higher compared to the low-responder group. Since activation of the B-cell response after vaccination is induced by Th2 cells and IL-13 is produced by these cells, we conclude that the difference in HBsAg-specific Th2 cells is involved in determining the differences in anti-HBs level and memory B-cell numbers between low and high responders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2015.12.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!