Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign.

J Comput Aided Mol Des

Departments of Chemistry, Pharmacology, and Biomedical Informatics, Center for Structural Biology, Institute for Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA.

Published: March 2016

Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803518PMC
http://dx.doi.org/10.1007/s10822-015-9893-9DOI Listing

Publication Analysis

Top Keywords

atom properties
16
2da_sign 3da_sign
12
2da 3da
12
3da descriptors
8
number bonds
8
model performance
8
atom
6
3da
5
autocorrelation descriptor
4
descriptor improvements
4

Similar Publications

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Seeding Janus Zn-Fe Diatomic Pairs on a Hollow Nanobox for Potent Catalytic Therapy.

Nano Lett

January 2025

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.

Dual atomic nanozymes (DAzymes) are promising for applications in the field of tumor catalytic therapy. Here, integrating with ultrasmall FeC nanoclusters, asymmetric coordination featuring Janus Zn-Fe dual-atom sites with an ON-Fe-Zn-N moiety embedded in a carbon vacancy-engineered hollow nanobox (Janus ZnFe DAs-FeC) was elaborately developed. Theoretical calculation revealed that the synergistic effects of Zn centers acting as both adsorption and active sites, oxygen-heteroatom doping, carbon vacancy, and FeC nanoclusters jointly downshifted the d-band center of Fe 3d orbitals, optimizing the desorption behaviors of intermediates *OH, thereby significantly promoting catalytic activity.

View Article and Find Full Text PDF

The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N)BX] and [(N)BX] compounds (X = H, F, Cl, Br).

View Article and Find Full Text PDF

Carbon Doping in Small Lithium Clusters: Structural, Energetic, and Electronic Properties from Quantum Monte Carlo Calculations.

ACS Omega

January 2025

Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil.

We investigate the energetic and structural properties of small lithium clusters doped with a carbon atom using a combination of computational methods, including density functional theory (DFT), diffusion quantum Monte Carlo (DMC), and the Hartree-Fock (HF) approximation. We calculate the lowest energy structures, total ground-state energies, electron populations, binding energies, and dissociation energies as a function of cluster size. Our results show that carbon doping significantly enhances the stability of lithium clusters, increasing the magnitude of the binding energy by 0.

View Article and Find Full Text PDF

In this work, we investigate the electronic and magnetic properties of the InSe monolayer enriched by doping with IVA-group (Si and Ge) and VA-group (P and As) atoms. Both In and Se sublattices are considered as doping sites to realize n- and p-type doping (X@InSe and X@InSe systems, X = Si, Ge, P, and As), respectively. The pristine InSe monolayer is an indirect gap semiconductor with a band gap of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!