Alzheimer's disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697850PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146127PLOS

Publication Analysis

Top Keywords

tau aggregation
24
ipsc-derived neurons
8
tau
8
aggregation
7
human ipsc-derived
4
neurons
4
model
4
neurons model
4
model tau
4
aggregation alzheimer's
4

Similar Publications

In Alzheimer's disease (AD), Aβ triggers p-tau secretion, which drives tau aggregation. Therefore, it is critical to characterize modulators of Aβ-related p-tau increases which may alter AD trajectories. Here, we assessed whether factors known to alter tau levels in AD modulate the association between fibrillar Aβ and secreted p-tau determined in the cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease.

J Adv Res

January 2025

Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China. Electronic address:

Background: Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca) signaling pathway in the progression of AD, indicating a complex interplay between Ca dysregulation and various pathological processes.

View Article and Find Full Text PDF

Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective.

RSC Med Chem

December 2024

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506.

Alzheimer's disease (AD) is a complex, incurable neurological condition characterized by cognitive decline, cholinergic neuron reduction, and neuronal loss. Its exact pathology remains uncertain, but multiple treatment hypotheses have emerged. The current treatments, single or combined, alleviate only symptoms and struggle to manage AD due to its multifaceted pathology.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.

View Article and Find Full Text PDF

The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!