Purpose: To determine and interrelate the levels of heparanase, syndecan-1, and VEGF in proliferative diabetic retinopathy (PDR), and to study the production of heparanase by human retinal microvascular endothelial cells (HRMEC) and its effect on HRMEC barrier function.
Methods: Vitreous samples from 33 PDR and 27 nondiabetic patients, epiretinal membranes from 16 patients with PDR and HRMEC were studied by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot analysis. The effect of heparanase on HRMEC barrier function was evaluated by transendothelial electrical resistance.
Results: We showed a significant increase in the expression of heparanase, syndecan-1, and VEGF in vitreous samples from PDR patients compared with nondiabetic controls (P < 0.0001 for all comparisons). Significant positive correlations were found between the levels of heparanase and the levels of syndecan-1 (r = 0.75, P < 0.0001) and VEGF (r = 0.91, P < 0.0001) and between the levels of syndecan-1 and the levels of VEGF (r = 0.78, P < 0.0001). In epiretinal membranes, heparanase was expressed in vascular endothelial cells and CD45-expressing leukocytes. High-glucose, tumor necrosis factor alpha (TNF-α), and the combination of TNF-α and interleukin (IL)-1β, but not cobalt chloride induced upregulation of heparanase in HRMEC. Heparanase-reduced transendothelial electrical resistance of HRMEC.
Conclusions: Our findings suggest a link between heparanase, syndecan-1, and VEGF in the progression of PDR and that heparanase is a potential target for therapy of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.15-18025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!