A series of novel (E)-1,3-diphenyl-1H-pyrazole derivatives containing O-benzyl oxime moiety were firstly synthesized and their immunosuppressive activities were evaluated. Among all the compounds, 4n exhibited the most potent inhibitory activity (IC50 = 1.18 μM for lymph node cells and IC50 = 0.28 μM for PI3Kγ), which was comparable to that of positive control. Moreover, selected compounds were tested for their inhibitory activities against IL-6 released in ConA-simulated mouse lymph node cells, 4n exhibited the most potent inhibitory ability. Furthermore, in order to study the preliminary mechanism of the compounds with potent inhibitory activity, the RT-PCR experiment was performed to assay the effect of selected compounds on mRNA expression of IL-6. Among them, compound 4n strongly inhibited the expression of IL-6 mRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.12.020DOI Listing

Publication Analysis

Top Keywords

potent inhibitory
12
e-13-diphenyl-1h-pyrazole derivatives
8
derivatives o-benzyl
8
o-benzyl oxime
8
oxime moiety
8
exhibited potent
8
inhibitory activity
8
lymph node
8
node cells
8
selected compounds
8

Similar Publications

, known as "Dhumuugaa" in Afan Oromo and "Sensel" or "Smiza" in Amharic, is traditionally used to treat ailments such as scabies, fever, asthma, diarrhea, malaria, and more. This study explored the chemical composition and biological activity of its extracts and isolated compounds. The essential oils were extracted using the hydrodistillation method, and their chemical composition was evaluated using GC-MS.

View Article and Find Full Text PDF

The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).

View Article and Find Full Text PDF

SARS-CoV-2 nonstructural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats which are natural reservoirs of sarbecoviruses and possess a markedly different innate immune system than humans. Here, we reveal that SARS-CoV-2 nsp1 potently inhibits translation in bat cells from Rhinolophus lepidus, belonging to the same genus as known sarbecovirus reservoirs hosts.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!