Seed storability in rice (Oryza sativa L.) is an important agronomic trait. Two segregating populations with N22 (indica) as a common parent, viz. a set of 122 backcross-inbred lines (BILs) derived from the backcross Nanjing35 (japonica)/N22//Nanjing35 and another population comprising 189 recombinant inbred lines (RILs) from the cross of USSR5 (japonica) and N22, were studied to detect quantitative trait loci (QTL) controlling seed storability. Germination percentage (GP) was used to evaluate seed storability after aging treated under three different conditions, viz. natural, artificial and combined aging treatments. A total of seven QTLs were identified on chromosomes 1, 2, 5, 6 and 9. Among them, a major QTL, qSSn-9, was common in the two populations. In contrast, four QTLs (qSSnj-2-1, qSSn-2-2, qSSn-5 and qSSn-6) were detected in BILs and the QTL qSSn-1 was identified in RILs, which was a new QTL for seed storability. The N22-derived alleles increased the seed storability at all the loci except qSSnj-2-1. We also investigated the effect of QTLs using five selected lines with high storability from BILs and verified qSSn-5 with a near-isogenic line (NIL). These results provide an opportunity for pyramiding or map-based cloning major QTLs for seed storability in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671702 | PMC |
http://dx.doi.org/10.1270/jsbbs.65.411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!