Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts.

J Nucl Med

Laboratory of Experimental Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands.

Published: April 2016

Liposomal chemotherapy offers several advantages over conventional therapies, including high intratumoral drug delivery, reduced side effects, prolonged circulation time, and the possibility to dose higher. The efficient delivery of liposomal chemotherapeutics relies, however, on the enhanced permeability and retention (EPR) effect, which refers to the ability of macromolecules to extravasate leaky tumor vessels and accumulate in the tumor tissue. Using a panel of human xenograft tumors, we evaluated the influence of the EPR effect on liposomal distribution in vivo by injection of pegylated liposomes radiolabeled with (111)In. Liposomal accumulation in tumors and organs was followed over time by SPECT/CT imaging. We observed that fast-growing xenografts, which may be less representative of tumor development in patients, showed higher liposomal accumulation than slow-growing xenografts. Additionally, several other parameters known to influence the EPR effect were evaluated, such as blood and lymphatic vessel density, intratumoral hypoxia, and the presence of infiltrating macrophages. The investigation of various parameters showed a few correlations. Although hypoxia, proliferation, and macrophage presence were associated with tumor growth, no hard conclusions or predictions could be made regarding the EPR effect or liposomal uptake. However, liposomal uptake was significantly correlated with tumor growth, with fast-growing tumors showing a higher uptake, although no biological determinants could be elucidated to explain this correlation.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.115.166173DOI Listing

Publication Analysis

Top Keywords

enhanced permeability
8
permeability retention
8
influence epr
8
epr liposomal
8
liposomal accumulation
8
tumor growth
8
liposomal uptake
8
liposomal
7
tumor
5
investigation factors
4

Similar Publications

Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Background: Polyether ether ketone (PEEK) was modified by a sulfuric and nitric acid mixed system to improve the solubility of the material and the gas selective permeability of the film. SN1 and SN5, synthesized from mixed acid systems (with ratios of nitric acid and sulfuric acid of 1:1 and 1:5, respectively) were chosen because they had comparable nitro groups but differing sulfonyl groups. To investigate the impact of the type and content of sulfonated and nitrated polyether ether ketone (SNPEEK) on the structure and physicochemical properties of the films, SN1/polyvinyl chloride (PVC) and SN5/polyvinyl chloride films were made by adding varying amounts of SN1 and SN5 (0.

View Article and Find Full Text PDF

The mycomembrane of mycobacteria has long been regarded as the primary barrier to the accumulation of molecules within these bacteria. Understanding accumulation beyond the mycomembrane of ( ) is crucial for developing effective antimycobacterial agents. This study investigates two design principles commonly found in natural products and mammalian cell-permeable peptides - backbone -methylation and macrocyclization - aimed at enhancing accumulation.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!