De novo characterization of the liver transcriptome of javelin goby Synechogobius hasta and analysis of its transcriptomic profile following waterborne copper exposure.

Fish Physiol Biochem

Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.

Published: June 2016

Previous studies have investigated the physiological responses to chronic copper (Cu) exposure in the liver of Synechogobius hasta; however, little information is available on the underlying molecular mechanisms. In an effort to better understand the mechanisms of Cu toxicity and to illuminate global gene expression patterns modulated by Cu exposure, we obtained the liver transcriptome information of S. hasta by RNA sequencing (RNA-seq) technology and also investigated the differential expression of genes following waterborne Cu exposure. Using the Illumina sequencing platform, as many as 60,217 unigenes were generated, with 815 bp of average length and 1298 bp of unigene N50 after filtering and assembly. For functional annotation analysis, 34,860, 31,526, 31,576, 25,808, 11,542, and 21,721 unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and total annotation unigenes were 37,764. After 30 days of exposure to 55 μg Cu/l, a total of 292 and 1076 genes were significantly up- and down-regulated, respectively. By KEGG analysis, 660 had a specific pathway annotation. Subsequent bioinformatics analysis revealed that the differentially expressed genes were mainly related to lipid metabolism, immune system, apoptosis, and signal transduction, suggesting that these signaling pathways may be regulated by Cu exposure. The present study provides comprehensive sequence information for subsequent gene expression studies regarding S. hasta, and the transcriptome profiling after Cu exposure is also expected to improve our understanding of the molecular toxicology of Cu.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-015-0190-2DOI Listing

Publication Analysis

Top Keywords

liver transcriptome
8
synechogobius hasta
8
copper exposure
8
exposure liver
8
gene expression
8
exposure
7
novo characterization
4
characterization liver
4
transcriptome javelin
4
javelin goby
4

Similar Publications

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Unlocking the potential of : A breakthrough in liver cancer treatment Wnt/β-catenin pathway modulation.

World J Gastroenterol

January 2025

Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.

Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.

View Article and Find Full Text PDF

Spondyloarthritis is a prevalent and persistent condition that significantly impacts the quality of life. Its intricate pathological mechanisms have led to a scarcity of animal models capable of replicating the disease progression in humans, making it a prominent area of research interest in the field. To delve into the pathological and physiological traits of spontaneous non-human primate spondyloarthritis, this study meticulously examined the disease features of this natural disease model through an array of techniques including X-ray imaging, MRI imaging, blood biochemistry, markers of bone metabolism, transcriptomics, proteomics, and metabolomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!