Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2015.12.001 | DOI Listing |
Microbiol Spectr
September 2021
Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA.
Current methods for screening small molecules that inhibit the plasmid pCD1-encoded Yersinia pestis type III secretion system (T3SS) include lengthy growth curves followed by multistep luminescence assays or Western blot assays to detect secretion, or lack thereof, of effector proteins. The goal of this research was to develop a novel disk diffusion assay on magnesium oxalate (MOX) agar as a simple way to evaluate the susceptibility of Y. pestis to type III secretion system inhibitors.
View Article and Find Full Text PDFInfect Immun
February 2020
Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
causes a rapid, lethal disease referred to as plague. actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS).
View Article and Find Full Text PDFF1000Res
June 2020
Department of Molecular Biology and Microbiology, 136 Harrison Ave, Tufts University School of Medicine, Boston, MA, 02111, USA.
The human and animal pathogens , which causes bubonic and pneumonic plague, and and , which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection.
View Article and Find Full Text PDFPLoS Pathog
June 2019
Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators.
View Article and Find Full Text PDFEur J Microbiol Immunol (Bp)
December 2018
Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
Adaptive immunity is essentially required to control acute infection with enteropathogenic (Yptb). We have recently demonstrated that Yptb can directly modulate naïve CD4 T cell differentiation. However, whether fully differentiated forkhead box protein P3 (Foxp3) regulatory T cells (Tregs), fundamental key players to maintain immune homeostasis, are targeted by Yptb remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!