In the present study, we reveal myelin-specific expression and targeting of mRNA and biochemical pools of HspB5 in the mouse CNS. Our observations are based on in situ hybridization, electron microscopy and co-localization with 2',3'-Cyclic-Nucleotide 3'-Phosphodiesterase (CNPase), reinforcing this myelin-selective expression. HspB5 mRNA might be targeted to these structures based on its presence in discrete clusters resembling RNA granules and the presence of a putative RNA transport signal. Further, sub-cellular fractionation of myelin membranes reveals a distinct sub-compartment-specific association and detergent solubility of HspB5. This is akin to other abundant myelin proteins and is consistent with HspB5's association with cytoskeletal/membrane assemblies. Oligodendrocytes have a pivotal role in supporting axonal function via generating and segregating the ensheathing myelin. This specialization places extreme structural and metabolic demands on this glial cell type. Our observations place HspB5 in oligodendrocytes which may require selective and specific chaperone capabilities to maintain normal function and neuronal support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2015.12.035 | DOI Listing |
Int J Biol Macromol
January 2024
College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
The treatment of Parkinson's disease is a global medical challenge. α-Synuclein (α-Syn) is the causative protein in Parkinson's disease and is closely linked to its progression. Therefore, inhibiting the pathological aggregation of α-Syn and its neurotoxicity is essential for the treatment of Parkinson's disease.
View Article and Find Full Text PDFPhysiol Rep
November 2023
Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Titin-dependent stiffening of cardiomyocytes is a significant contributor to left ventricular (LV) diastolic dysfunction in heart failure with preserved LV ejection fraction (HFpEF). Small heat shock proteins (HSPs), such as HSPB5 and HSPB1, protect titin and administration of HSPB5 in vitro lowers cardiomyocyte stiffness in pressure-overload hypertrophy. In humans, oral treatment with geranylgeranylacetone (GGA) increases myocardial HSP expression, but the functional implications are unknown.
View Article and Find Full Text PDFCell Stress Chaperones
November 2023
Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
HspB5/alphaB-crystallin is an ubiquitously expressed member of the small heat shock protein family which help cells to survive cellular stress conditions and are also implicated in neurodegenerative diseases. MicroRNAs are small non-coding RNAs fine-tuning protein expression mainly by inhibiting the translation of target genes. Our earlier finding of an increase in HspB5/alphaB-crystallin protein amount after heat shock in rat hippocampal neurons without a concomitant increase of mRNA prompted us to look for microRNAs as a posttranscriptional regulatory mechanism.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2023
INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France.
Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Department of Biochemistry, University of Washington, 98195-7350 Seattle, WA.
Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!