Variation in SLC19A3 and Protection From Microvascular Damage in Type 1 Diabetes.

Diabetes

Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland Baker IDI Heart and Diabetes Institute, Melbourne, Australia

Published: April 2016

The risk of long-term diabetes complications is not fully explained by diabetes duration or long-term glycemic exposure, suggesting the involvement of genetic factors. Because thiamine regulates intracellular glucose metabolism and corrects for multiple damaging effects of high glucose, we hypothesized that variants in specific thiamine transporters are associated with risk of severe retinopathy and/or severe nephropathy because they modify an individual's ability to achieve sufficiently high intracellular thiamine levels. We tested 134 single nucleotide polymorphisms (SNPs) in two thiamine transporters (SLC19A2/3) and their transcription factors (SP1/2) for an association with severe retinopathy or nephropathy or their combination in the FinnDiane cohort. Subsequently, the results were examined for replication in the DCCT/EDIC and Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) cohorts. We found two SNPs in strong linkage disequilibrium in the SLC19A3 locus associated with a reduced rate of severe retinopathy and the combined phenotype of severe retinopathy and end-stage renal disease. The association for the combined phenotype reached genome-wide significance in a meta-analysis that included the WESDR cohort. These findings suggest that genetic variations in SLC19A3 play an important role in the pathogenesis of severe diabetic retinopathy and nephropathy and may explain why some individuals with type 1 diabetes are less prone than others to develop microvascular complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806664PMC
http://dx.doi.org/10.2337/db15-1247DOI Listing

Publication Analysis

Top Keywords

severe retinopathy
16
type diabetes
8
thiamine transporters
8
retinopathy nephropathy
8
diabetic retinopathy
8
combined phenotype
8
severe
6
retinopathy
6
variation slc19a3
4
slc19a3 protection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!