Activation of the sympathetic nervous system (SNS) drives breast cancer progression in preclinical breast cancer models, but it has yet to be established if neoplastic and stromal cells residing in the tumor are directly targeted by locally released norepinephrine (NE). In murine orthotopic and spontaneous mammary tumors, tyrosine hydroxylase (TH)+ sympathetic nerves were limited to the periphery of the tumor. No TH+ staining was detected deeper within these tumors, even in regions with a high density of blood vessels. NE concentration was much lower in tumors compared to the more densely innervated spleen, reflecting the relative paucity of tumor TH+ innervation. Tumor and spleen NE concentration decreased with increased tissue mass. In mice treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to selectively destroy sympathetic nerves, tumor NE concentration was reduced approximately 50%, suggesting that the majority of tumor NE is derived from local sympathetic nerves. To evaluate NE utilization, NE turnover in orthotopic 4T1 mammary tumors was compared to spleen under baseline and stress conditions. In non-stressed mice, NE turnover was equivalent between tumor and spleen. In mice exposed to a stressor, tumor NE turnover was increased compared to spleen NE turnover, and compared to non-stressed tumor NE turnover. Together, these results demonstrate that NE in mammary tumors is derived from local sympathetic nerves that synthesize and metabolize NE. However, differences between spleen and tumor NE turnover with stressor exposure suggest that sympathetic NE release is regulated differently within the tumor microenvironment compared to the spleen. Local mammary tumor sympathetic innervation, despite its limited distribution, is responsive to stressor exposure and therefore can contribute to stress-induced tumor progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783183 | PMC |
http://dx.doi.org/10.1016/j.bbi.2015.12.014 | DOI Listing |
JACC Clin Electrophysiol
December 2024
St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:
Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.
Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.
J Clin Med
December 2024
Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11451, Saudi Arabia.
The role of autonomic nervous system (ANS) modulation in chronic neck pain remains elusive. Transcutaneous vagus nerve stimulation (t-VNS) provides a novel, non-invasive means of potentially mitigating chronic neck pain. This study aimed to assess the effects of ANS modulation on heart rate variability (HRV), pain perception, and neck disability.
View Article and Find Full Text PDFInflammation
January 2025
Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China.
The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.
View Article and Find Full Text PDFCardiol Rev
October 2024
From the Department of Medicine, New York Medical College, Valhalla, NY.
Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan.
The current study aimed to propose a method to directly measure right cervical vagal nerve activity (cVNA) alongside renal sympathetic nerve activity (RSNA) in conscious rats. The right cervical vagus nerve was surgically exposed and fitted with a bipolar electrode to record cVNA. A microcatheter was used to administer levobupivacaine to selectively block afferent cVNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!